Adam Cooman

YZSHGABT
YY→ZY→SY→HY→GY→AY→BY→T
ZZ→YZ→SZ→HZ→GZ→AZ→BZ→T
SS→YS→ZS→HS→GS→AS→BS→T
HH→YH→ZH→SH→GH→AH→BH→T
GG→YG→ZG→SG→HG→AG→BG→T
AA→YA→ZA→SA→HA→GA→BA→T
BB→YB→ZB→SB→HB→GB→AB→T
TT→YT→ZT→ST→HT→GT→AT→B

From Z-parameters to Y-parameters

In matrix form, the formula is

Y=Z1\mathbf{Y} ={\mathbf{Z}}^{-1}

When dealing with 2 ports, we obtain

Y11=Z22Z11Z22Z12Z21Y12=Z12Z11Z22Z12Z21Y21=Z21Z11Z22Z12Z21Y22=Z11Z11Z22Z12Z21\begin{align*}Y_{11} &=\frac{Z_{22}}{Z_{11}\,Z_{22}-Z_{12}\,Z_{21}}\\Y_{12} &=-\frac{Z_{12}}{Z_{11}\,Z_{22}-Z_{12}\,Z_{21}}\\Y_{21} &=-\frac{Z_{21}}{Z_{11}\,Z_{22}-Z_{12}\,Z_{21}}\\Y_{22} &=\frac{Z_{11}}{Z_{11}\,Z_{22}-Z_{12}\,Z_{21}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[V1VN]V=Z[I1IN]I\underbrace{ \begin{bmatrix}V_1 \\ \vdots \\ V_N \end{bmatrix} }_{\mathbf{V}} = \mathbf{Z} \underbrace{ \begin{bmatrix}I_1 \\ \vdots \\ I_N \end{bmatrix} }_{\mathbf{I}}

[I1IN]I=Y[V1VN]V\underbrace{ \begin{bmatrix}I_1 \\ \vdots \\ I_N \end{bmatrix} }_{\mathbf{I}} = \mathbf{Y} \underbrace{ \begin{bmatrix}V_1 \\ \vdots \\ V_N \end{bmatrix} }_{\mathbf{V}}