Adam Cooman

YZSHGABT
YY→ZY→SY→HY→GY→AY→BY→T
ZZ→YZ→SZ→HZ→GZ→AZ→BZ→T
SS→YS→ZS→HS→GS→AS→BS→T
HH→YH→ZH→SH→GH→AH→BH→T
GG→YG→ZG→SG→HG→AG→BG→T
AA→YA→ZA→SA→HA→GA→BA→T
BB→YB→ZB→SB→HB→GB→AB→T
TT→YT→ZT→ST→HT→GT→AT→B

From H-parameters to G-parameters

In matrix form, the formula is

G=H1\mathbf{G} ={\mathbf{H}}^{-1}

While for each element, we obtain

G11=H22H11H22H12H21G12=H12H11H22H12H21G21=H21H11H22H12H21G22=H11H11H22H12H21\begin{align*}G_{11} &=\frac{H_{22}}{H_{11}\,H_{22}-H_{12}\,H_{21}}\\G_{12} &=-\frac{H_{12}}{H_{11}\,H_{22}-H_{12}\,H_{21}}\\G_{21} &=-\frac{H_{21}}{H_{11}\,H_{22}-H_{12}\,H_{21}}\\G_{22} &=\frac{H_{11}}{H_{11}\,H_{22}-H_{12}\,H_{21}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[V1I2]=H[I1V2]\begin{bmatrix}V_1 \\I_2\end{bmatrix} = \mathbf{H}\begin{bmatrix}I_1 \\V_2\end{bmatrix}

[I1V2]=G[V1I2]\begin{bmatrix}I_1 \\V_2\end{bmatrix} = \mathbf{G}\begin{bmatrix}V_1 \\I_2\end{bmatrix}