Adam Cooman

YZSHGABT
Y Y→Z Y→S Y→H Y→G Y→A Y→B Y→T
Z Z→Y Z→S Z→H Z→G Z→A Z→B Z→T
S S→Y S→Z S→H S→G S→A S→B S→T
H H→Y H→Z H→S H→G H→A H→B H→T
G G→Y G→Z G→S G→H G→A G→B G→T
A A→Y A→Z A→S A→H A→G A→B A→T
B B→Y B→Z B→S B→H B→G B→A B→T
T T→Y T→Z T→S T→H T→G T→A T→B

From B-parameters to T-parameters

In matrix form, the formula is

T=[k1Z1k1k1Z1k1]B1[k2Z2k2k2Z2k2]1\mathbf{T} =\begin{bmatrix} k_{1} & Z_{1}\,k_{1}\\ k_{1} & -Z_{1}\,k_{1} \end{bmatrix}\,{\mathbf{B}}^{-1}\,{\begin{bmatrix} k_{2} & Z_{2}\,k_{2}\\ k_{2} & -Z_{2}\,k_{2} \end{bmatrix}}^{-1}

While for each element, we obtain

T11=k1(B12B11Z1B22Z2+B21Z1Z2)2Z2k2(B11B22B12B21)T12=k1(B12B11Z1+B22Z2B21Z1Z2)2Z2k2(B11B22B12B21)T21=k1(B12+B11Z1B22Z2B21Z1Z2)2Z2k2(B11B22B12B21)T22=k1(B12+B11Z1+B22Z2+B21Z1Z2)2Z2k2(B11B22B12B21)\begin{align*}T_{11} &=-\frac{k_{1}\,\left(B_{12}-B_{11}\,Z_{1}-B_{22}\,Z_{2}+B_{21}\,Z_{1}\,Z_{2}\right)}{2\,Z_{2}\,k_{2}\,\left(B_{11}\,B_{22}-B_{12}\,B_{21}\right)}\\T_{12} &=\frac{k_{1}\,\left(B_{12}-B_{11}\,Z_{1}+B_{22}\,Z_{2}-B_{21}\,Z_{1}\,Z_{2}\right)}{2\,Z_{2}\,k_{2}\,\left(B_{11}\,B_{22}-B_{12}\,B_{21}\right)}\\T_{21} &=-\frac{k_{1}\,\left(B_{12}+B_{11}\,Z_{1}-B_{22}\,Z_{2}-B_{21}\,Z_{1}\,Z_{2}\right)}{2\,Z_{2}\,k_{2}\,\left(B_{11}\,B_{22}-B_{12}\,B_{21}\right)}\\T_{22} &=\frac{k_{1}\,\left(B_{12}+B_{11}\,Z_{1}+B_{22}\,Z_{2}+B_{21}\,Z_{1}\,Z_{2}\right)}{2\,Z_{2}\,k_{2}\,\left(B_{11}\,B_{22}-B_{12}\,B_{21}\right)}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[V2I2]=B[V1I1]\begin{bmatrix}V_2 \\-I_2\end{bmatrix} = \mathbf{B}\begin{bmatrix}V_1 \\I_1\end{bmatrix}

[A1B1]=T[B2A2]\begin{bmatrix}A_1 \\B_1\end{bmatrix} = \mathbf{T}\begin{bmatrix}B_2 \\A_2\end{bmatrix}

The incident and reflected waves are defined as

A1=k1(V1+I1Z1)B1=k1(V1I1Z1)A2=k2(V2+I2Z2)B2=k2(V2I2Z2)\begin{align*}A_1 &= k_{1}\,\left(V_{1}+I_{1}\,Z_{1}\right)\qquad B_1 &= k_{1}\,\left(V_{1}-I_{1}\,Z_{1}\right)\\A_2 &= k_{2}\,\left(V_{2}+I_{2}\,Z_{2}\right)\qquad B_2 &= k_{2}\,\left(V_{2}-I_{2}\,Z_{2}\right)\\\end{align*}

with Z0,iZ_{0,i} the reference impedance for port ii and kik_i defined as

ki=12(Z0,i)ki=α(Z0,i)2Z0,ik_i=\frac{1}{2\sqrt{\Re\left( Z_{0,i}\right) }}\qquad k_i=\alpha\frac{\sqrt{\Re\left( Z_{0,i} \right) }}{2\left|Z_{0,i}\right|}

depending on whether you are using power- or pseudowaves.