Adam Cooman

YZSHGABT
Y Y→Z Y→S Y→H Y→G Y→A Y→B Y→T
Z Z→Y Z→S Z→H Z→G Z→A Z→B Z→T
S S→Y S→Z S→H S→G S→A S→B S→T
H H→Y H→Z H→S H→G H→A H→B H→T
G G→Y G→Z G→S G→H G→A G→B G→T
A A→Y A→Z A→S A→H A→G A→B A→T
B B→Y B→Z B→S B→H B→G B→A B→T
T T→Y T→Z T→S T→H T→G T→A T→B

From B-parameters to G-parameters

In matrix form, the formula is

G=([0010]B+[0100])([0001]B+[1000])1\mathbf{G} =\left(\begin{bmatrix} 0 & 0\\ 1 & 0 \end{bmatrix}\,\mathbf{B}+\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}\right)\,{\left(\begin{bmatrix} 0 & 0\\ 0 & -1 \end{bmatrix}\,\mathbf{B}+\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}\right)}^{-1}

While for each element, we obtain

G11=B21B22G12=1B22G21=B11B22B12B21B22G22=B12B22\begin{align*}G_{11} &=-\frac{B_{21}}{B_{22}}\\G_{12} &=-\frac{1}{B_{22}}\\G_{21} &=\frac{B_{11}\,B_{22}-B_{12}\,B_{21}}{B_{22}}\\G_{22} &=-\frac{B_{12}}{B_{22}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[V2I2]=B[V1I1]\begin{bmatrix}V_2 \\-I_2\end{bmatrix} = \mathbf{B}\begin{bmatrix}V_1 \\I_1\end{bmatrix}

[I1V2]=G[V1I2]\begin{bmatrix}I_1 \\V_2\end{bmatrix} = \mathbf{G}\begin{bmatrix}V_1 \\I_2\end{bmatrix}