Adam Cooman

YZSHGABT
Y Y→Z Y→S Y→H Y→G Y→A Y→B Y→T
Z Z→Y Z→S Z→H Z→G Z→A Z→B Z→T
S S→Y S→Z S→H S→G S→A S→B S→T
H H→Y H→Z H→S H→G H→A H→B H→T
G G→Y G→Z G→S G→H G→A G→B G→T
A A→Y A→Z A→S A→H A→G A→B A→T
B B→Y B→Z B→S B→H B→G B→A B→T
T T→Y T→Z T→S T→H T→G T→A T→B

From Y-parameters to Z-parameters

In matrix form, the formula is

Z=Y1\mathbf{Z} ={\mathbf{Y}}^{-1}

When dealing with 2 ports, we obtain

Z11=Y22Y11Y22Y12Y21Z12=Y12Y11Y22Y12Y21Z21=Y21Y11Y22Y12Y21Z22=Y11Y11Y22Y12Y21\begin{align*}Z_{11} &=\frac{Y_{22}}{Y_{11}\,Y_{22}-Y_{12}\,Y_{21}}\\Z_{12} &=-\frac{Y_{12}}{Y_{11}\,Y_{22}-Y_{12}\,Y_{21}}\\Z_{21} &=-\frac{Y_{21}}{Y_{11}\,Y_{22}-Y_{12}\,Y_{21}}\\Z_{22} &=\frac{Y_{11}}{Y_{11}\,Y_{22}-Y_{12}\,Y_{21}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[I1IN]I=Y[V1VN]V\underbrace{ \begin{bmatrix}I_1 \\ \vdots \\ I_N \end{bmatrix} }_{\mathbf{I}} = \mathbf{Y} \underbrace{ \begin{bmatrix}V_1 \\ \vdots \\ V_N \end{bmatrix} }_{\mathbf{V}}

[V1VN]V=Z[I1IN]I\underbrace{ \begin{bmatrix}V_1 \\ \vdots \\ V_N \end{bmatrix} }_{\mathbf{V}} = \mathbf{Z} \underbrace{ \begin{bmatrix}I_1 \\ \vdots \\ I_N \end{bmatrix} }_{\mathbf{I}}