Adam Cooman

YZSHGABT
YY→ZY→SY→HY→GY→AY→BY→T
ZZ→YZ→SZ→HZ→GZ→AZ→BZ→T
SS→YS→ZS→HS→GS→AS→BS→T
HH→YH→ZH→SH→GH→AH→BH→T
GG→YG→ZG→SG→HG→AG→BG→T
AA→YA→ZA→SA→HA→GA→BA→T
BB→YB→ZB→SB→HB→GB→AB→T
TT→YT→ZT→ST→HT→GT→AT→B

From Y-parameters to B-parameters

In matrix form, the formula is

B=([0001]Y+[0100])([0010]Y+[1000])1\mathbf{B} =\left(\begin{bmatrix} 0 & 0\\ 0 & -1 \end{bmatrix}\,\mathbf{Y}+\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}\right)\,{\left(\begin{bmatrix} 0 & 0\\ 1 & 0 \end{bmatrix}\,\mathbf{Y}+\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}\right)}^{-1}

While for each element, we obtain

B11=Y11Y12B12=1Y12B21=Y11Y22Y12Y21Y12B22=Y22Y12\begin{align*}B_{11} &=-\frac{Y_{11}}{Y_{12}}\\B_{12} &=\frac{1}{Y_{12}}\\B_{21} &=\frac{Y_{11}\,Y_{22}-Y_{12}\,Y_{21}}{Y_{12}}\\B_{22} &=-\frac{Y_{22}}{Y_{12}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[I1I2]=Y[V1V2]\begin{bmatrix}I_1 \\I_2\end{bmatrix} = \mathbf{Y}\begin{bmatrix}V_1 \\V_2\end{bmatrix}

[V2I2]=B[V1I1]\begin{bmatrix}V_2 \\-I_2\end{bmatrix} = \mathbf{B}\begin{bmatrix}V_1 \\I_1\end{bmatrix}