Adam Cooman

Previous

Model-Free Closed-Loop Stability Analysis:
A Linear Functional Approach

Next

Appendix 1: Mapping of the basis functions onto the unit disc

Applying transform (7) to the basis functions of the complex plane (3) yields the following:

Bkdisc(z)=πα2z1Bk(α1+z1z)=πα2z1απ(α1+z1zα)k(α1+z1z+α)k+1=zk\begin{align*} B_{k}^{\mathrm{disc}}\left(z\right) &=\sqrt{\pi\alpha}\frac{2}{z-1}B_{k}\left(\alpha\frac{1+z}{1-z}\right)\\ &=-\sqrt{\pi\alpha}\frac{2}{z-1}\sqrt{\frac{\alpha}{\pi}}\frac{\left(\alpha\frac{1+z}{1-z}-\alpha\right)^{k}}{\left(\alpha\frac{1+z}{1-z}+\alpha\right)^{k+1}}=z^{k} \end{align*}
Previous
1  2  3  4  5  6  7  8  9  10 11  
Next