

Design and Analysis of an On-Chip Programmable Op-Amp based Filter

Adam Cooman

Vrije Universiteit Brussel

June 27, 2012

eSYSID

electronic SYStem IDentification test-bench

Programmable chip to simulate a wide class of systems.

- Experimental verification of system identification techniques
- Useful for labs on system identification

eSYSID

electronic SYStem IDentification test-bench

Programmable chip to simulate a wide class of systems.

- Experimental verification of system identification techniques
- Useful for labs on system identification
 - High-level architecture
 - Op-amp design
 - Nonlinear analysis

Goals High-Level Architecture Realisation on-chip

Architecture

State-Space

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}(p,q)\mathbf{x}(t) + \mathbf{B}(p,q)\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}(p,q)\mathbf{x}(t) + \mathbf{D}(p,q)\mathbf{u}(t) \end{cases}$$

Goals High-Level Architecture Realisation on-chip

MOSFET-C

- Continuous time filter
- Low bandwidth
- High SNDR
- Better tune-ability than RC integrators

Tuning scheme

PLL-based tuning network

- Build VCO with two integrators
- Set oscillation frequency to precisely known external reference
- \Rightarrow High precision + repeatability

Op-Amp

Op-amp is critical to the performance of the MOSFET-C integrator

- High gain needed: $\pm 80 \text{dB}$
- *GBW* of about 100MHz
- load capacitance C_L of 10pF.

Op-Amp

Op-amp is critical to the performance of the MOSFET-C integrator

- High gain needed: $\pm 80 \text{dB}$
- *GBW* of about 100MHz
- load capacitance C_L of 10pF.
- 2 stage op-amp
- Miller compensation
- Ahuja compensation
- Fully Differential op-amp
- Final Design

Design Plan Sansen

Two equations

$$GBW = \frac{g_{m1}}{2\pi C_C}$$

$$f_{nd} = \frac{g_{m2}}{2\pi C_L (1 + C_{n,1}/C_C)}$$

Design parameters:

$$\alpha = C_L/C_C = 3$$

$$\beta = C_C/C_{n1} = 3$$

$$\gamma = f_{nd}/GBW = 3$$

Ahuja Compensation

Improvement over Miller compensated op-amp

- RHP zero compensation
- Lower current consumption

$$GBW = \frac{g_{m1}}{2\pi C_C}$$

$$f_{nd} = \frac{g_{m2}}{2\pi(C_C + C_L)} \frac{C_C}{C_{n1}}$$

Design plan can be recycled

Fully Differential

Design results

Design results

Nonlinear Analysis

We have the op-amp, How to improve its performance?

- Noise performance → Noise analysis
- Nonlinear performance $\rightarrow ???$

Nonlinear Analysis

We have the op-amp, How to improve its performance?

- $\blacksquare Noise performance \rightarrow Noise analysis$
- Nonlinear performance → Nonlinear analysis

Nonlinear Analysis

We have the op-amp, How to improve its performance?

- $\blacksquare Noise performance \rightarrow Noise analysis$
- Nonlinear performance → Nonlinear analysis

Overview

- Method
- Single-ended op-amp ∫

Published in conference paper

Fully differential op-amp

Best Linear Approximation

Best Linear Approximation

Spectral Correction

$$G_{S}(\boldsymbol{\omega}) = out(\boldsymbol{\omega}) - in(\boldsymbol{\omega}) \cdot G_{BLA}(\boldsymbol{\omega})$$

Best Linear Approximation

Spectral Correction

$$G_{S}(\boldsymbol{\omega}) = out(\boldsymbol{\omega}) - in(\boldsymbol{\omega}) \cdot G_{BLA}(\boldsymbol{\omega})$$

Assume linearity

$$G_{BLA} = ACFRF$$

Best Linear Approximation

Spectral Correction

$$G_{S}(\boldsymbol{\omega}) = out(\boldsymbol{\omega}) - in(\boldsymbol{\omega}) \cdot G_{BLA}(\boldsymbol{\omega})$$

Assume linearity

$$G_{BLA} = ACFRF$$

Noise Analysis

Refer nonlinear contributions to the output to compare them

Single-Ended Op-Amp

Step 1: Transient Analysis

Step 1: Transient Analysis

Step 2: Spectral correction

Step 2: Spectral correction

Step 2: Spectral correction

Step 3: Refer to the output

Results

Stage 1 at output

Sum of contributions vs simulated output

Extension to Fully-Differential Op-Amps

The method remains the same, but:

- MIMO
- Differential and Common mode
- Extra stage (Error amp)
- Assume symmetry

Extension to Fully-Differential Op-Amps

The method remains the same, but:

- MIMO
- Differential and Common mode
- Extra stage (Error amp)
- Assume symmetry

Fully-Differential Op-Amp under test

Introduction Single Ended Fully. Diff. Improvements

Results Differential Analysis

stage 1 at output

stage 2 at output

CMFB stage at out

error made on the differential mode

Future Research

- Simplify analysis
- Quicken analysis
- Improve accuracy

Overview

- System-Level architecture
- Op-Amp Design
- Nonlinear Analysis

Overview

- System-Level architecture
- Op-Amp Design
- Nonlinear Analysis

Continue the design of the chip

- Improve nonlinear performance of the op-amp
- Apply nonlinear analysis to complete architecture

Overview

- System-Level architecture
- Op-Amp Design
- Nonlinear Analysis

Continue the design of the chip

- Improve nonlinear performance of the op-amp
- Apply nonlinear analysis to complete architecture
- Design of the tuning network
- ESD, Yield, Lay-out