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Nomenclature

A State matrix

B Input matrix

C output matrix

D Feedthrough matrix

µ0 Charge carrier mobility

Cox Gate oxide capacitance

fT Transition frequency. For MOSFETs, it is defined as the frequency at which theoutput current
through a short, equals the input current flowing into the transistor. It is determined by the
time constant CGS/gm.

gm Transconductance of a MOSFET

GBW Gain Bandwidth product

ID Current flowing through the channel of a transistor. Defined as flowing from drain to source

Kp µ0Cox

n Emission coefficient

s Laplace variable

VE Early voltage of a MOSFET

VT Threshold voltage of a transistor

VDSAT Saturation voltage of a transistor

VDS Drain source voltage, voltage difference between the drain and the source of a transistor

VGS Gate source voltage, voltage difference between the gate and the source of a transistor

vsat Saturation speed of the charge carriers in the channel of a MOSFET due to velocity saturation

AC Alternating Current
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BLA Best Linear Approximation

DC Direct Current

eSYSID electronic SYStem IDentification test-bench

LHP Left Half Plane

MIMO Multiple Input Multiple Output

ODE Ordinary Differential Equation

OTA Operational transconductance Amplifier

PLL Phase Locked Loop

RHP Right Half Plane

SISO Single Input Single Output

SNDR Signal to Noise and Distortion Ratio

SNR Signal to Noise Ratio

THD Total Harmonic Distortion

VCO Voltage Controlled Oscillator



Samenvatting

In [1] wordt de electronic SYStem IDentification test-bench (eSYSID) besproken, een programmeerbare
test-bench die gebruikt kan worden in het experimenteel bevestigen van systeemidentificatie technieken,
alsook in het aanleren van diezelfde technieken aan studenten.

Het hart van de eSYSID test-bench is een digitaal programmeerbaar filter met prestaties die dezelfde
zijn van chip tot chip. In deze thesis wordt het het ontwerp van de eSYSID grondiger bekeken en worden
de eerste stappen in het ontwerp ervan gemaakt. Daarnaast wordt een analysemethode uitgewerkt die
kan gebuikt worden in het verder ontwerp van de eSYSID.

In het eerste hoofdstuk wordt de hoogniveau architectuur van de eSYSID in detail bekeken. Er
wordt gebruik gemaakt van de state-space voorstelling van (niet-)lineare systemen als basis voor de
architectuur. Het basisprincipe bestaat erin om de matrixvermenigvuldigingen op een analoge manier
uit te rekenen en zo een Multiple Input Multiple Output (MIMO) systeem met 3 ingangen en 2
uitgangen te implementeren. De mogelijke identificatie-experimenten evenals de calibratietechnieken
die nodig zijn om de performantie robuuster en reproduceerbaarder te maken worden bekeken en
er wordt een manier voorgesteld om de performantie ervan robuuster te maken tegen fouten in de
parameters. Op het einde van dit hoofdstuk wordt een hoogniveau architectuur bekomen.

In het tweede hoofdstuk worden de mogelijke configuraties van programmeerbare filters in CMOS
beschouwd. Elk van deze configuraties heeft zijn voor- en nadelen, deze worden onderzocht en de meest
geschikte configuratie voor ons probleem wordt gekozen. MOSFET-C werd gekozen als techniek om de
filter te realiseren. De basis bouwblokken in een MOSFET-C filter zijn een op-amp, capaciteitsbanken
en een gekalibreerde transconductor (Zie Figuur 1). Om de performantie verder te verbeteren wordt
voor een volledig differentiële uitvoering gekozen.

Het tweede deel van dit hoofdstuk bekijkt het ontwerp van de transconductor en het tuning netwerk
dat nodig is om de transconductor te kalibreren. Op deze manier wordt een programmeerbaar filter
bekomen dat robuust is tegen proces- en temperatuurvariaties.

Het derde hoofdstuk behandelt het ontwerp van de op-amp. De proces parameters worden uit het
ingewikkeldere BSIM3V3 gehaald zodat met snelle handberekeningen een ontwerp bekomen wordt. Dat
ontwerp wordt dan geverifieerd met simulaties en waar nodig aangepast. Er wordt een ontwerpstrategie
gekozen die, startend van de specificaties tot een ontwerp komt. We beginnen met het toepassen van
deze strategie op een simpel voorbeeld. Daarna beginnen we aan het echte werk: de volledig differentiële
op-amp die gebruikt kan worden in de filter. We geven meer DC versterking aan de op-amp, kiezen
een beter compensatie schema en onderzoeken de common-mode feedback schakelingen die mogelijk
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Figuur 1: MOSFET-C integrator Figuur 2: Toepassen van de BLA op een niet-
lineair systeem

zijn. Het hoofdstuk eindigt met het eigenlijke ontwerp van de op-amp en de simulatieresultaten ervan.

Om de performantie van de op-amp in te schatten, en mogelijk te verbeteren, werd een niet-
lineaire analysemethode uitgewerkt. Deze methode is het onderwerp van het vierde hoofdstuk. We
maken gebruik van de Best Linear Approximation (BLA) om het niet-lineair gedrag van de op-amp
te beschrijven. De BLA laat toe een niet-lineair systeem te benaderen door een lineair systeem en
distorsie wordt beschouwd als ruis (Figuur 2). Door gebruik te maken van een random odd random
fase multisinus kunnen we de distorsie gegenereerd door even en oneven niet-lineariteiten apart bepalen.

Vervolgens passen we technieken uit de klassieke ruisanalyse toe op die distorsie, namelijk het
refereren naar de uitgang. Op die manier kunnen we de invloed van elke trap op de uitgang vergelijken
en bekomen we een manier om het subsysteem dat verantwoordelijk is voor het genereren van het
meest distorsie te bepalen. Het grote voordeel van deze analyse is dat ze op een op-amp in een
feedback configuratie kan toegepast worden, zodat die feedback configuratie meegenomen wordt in de
analyse.

Eerst wordt de analyse toegepast op een enkelzijdige tweetraps op-amp. De resultaten en bespreking
ervan werden samengevat in een conference paper dat aanvaard werd voor publicatie. Het eerste deel
van hoofdstuk is een kopie van dit paper.

Daarna gaan we iets dieper in op de fouten die gemaakt worden tijdens de analyse door het niet-
lineaire instelpunt te gebruiken naast het gewone DC instelpunt. Dit leert ons veel over de beperkingen
van de analyse. In het laatste deel van het hoofdstuk wordt de analyse uitgebreid en toegepast op een
volledig differentiële op-amp met common-mode feedback. De uitbreiding is niet triviaal: de volledig
differentiele op-amp is een MIMO systeem en wordt dus best met matrices beschreven. We passen de
vergelijkingen voor het enkelzijdig geval aan zodat ze ook voor MIMO systemen werken. Tenslotte
wordt de analyse toegepast op de volledige differentiële op-amp en de resultaten ervan worden getoond
en besproken.

In het vijfde en laatste hoofdstuk worden de bekomen resultaten samengevat en wordt het mogelijk
toekomstige werk opgesomd.



Chapter 1

High-Level Architecture

Experimental confirmation is the ultimate step in the development of a scientific method or theory.
This is no different for system identification. The verification of the properties, advantages and disad-
vantages of an identification method requires a three step procedure

1. Design, realise and/or buy a system which is known as exactly as possible. This ’reference system’
aims at repeatability and well known, predictable operation, rather than top-notch performance.

2. Apply a collection of identification methods under test to the modelling of that ’reference system’

3. Compare the parameters obtained with the identification method to the known parameters of
the ’reference system’

Up to now, the ’reference system’ usually boils down to a digital simulation. The limitations are clear:
the prejudice of the experimenter is contained in the simulation and the nonidealities of the measu-
rement set-up are not present in these simulations and can’t be incorporated into the verification1.
This is a problem, because measurements are the base of system identification. The downside is that
including the measurements of a real system into the verification is hard.

Usually, custom-built systems act as the ’reference system’. Because each research group uses their
own custom-built systems, it is hard to compare the different methods developed by different research
groups. A benchmark for identification methods is therefore a mandatory step towards the objective
verification of identification methods under practically relevant operating conditions.

In this thesis, steps are taken in the development of such a standard test-bench. The goal is to
have a design that can easily be distributed among the research groups. Thereto, the setup must be
easily duplicated with a very highly repeatable performance. The advantages of such standardised
test-bench are clear:

• Identification methods developed by different groups can be compared immediately;

• Experiments can easily be repeated and checked by other research groups with different measu-
rement set-ups and conditions.

1For example, a method for time invariant systems will never encounter any drift. This can jeopardize the practical
applicability of the method.
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12 CHAPTER 1. HIGH-LEVEL ARCHITECTURE

Because system identification is applied to a very wide range of systems, and since it wouldn’t be very
practical to build a test-bench for each type of system separately, the proposed test-bench needs some
flexibility to represent a wide class of systems. A programmable analog signal processing module can
implement a class of ’reference systems’. Of course, the class is tuned to maximise the use of a class
of systems in an experimental verification.

Specifications for a possible realisation of the test-bench are examined in [1] where a test-bench
called eSYSID is proposed. The goal of this thesis is to contribute to the design and the development
of the eSYSID.

In this chapter, we will look into the high-level architecture, determine whatever necessary systems
and measurement set-ups can be represented by the architecture and try to obtain a general plan
for the eventual chip. Considerations made here will lead to specifications for the blocks which are
designed and analysed in the following chapters.

1.1 State-Space representation of linear and nonlinear systems

The eSYSID architecture proposes a test-bench which can be programmed to represent both linear
and nonlinear systems by using linear dynamic and static nonlinear blocks. In this thesis, only the
linear part will be considered. In order to build a system which can represent all the systems needed,
we must first find a mathematical way of describing all of them. An Ordinary Differential Equation
(ODE) should be a sufficiently accurate description. A general state-space representation of a system
described by an ODE is given by




ẋ(t) = f(x(t),u(t), t)

y(t) = g(x(t),u(t), t)
(1.1)

where u(t), y(t) and x(t) represent the inputs, outputs and the state vectors respectively. ẋ(t) repre-
sents the derivative of x(t) with respect to the time t. For linear dynamic systems, the functions f(·)
and g(·) can be made using the following set of differential equations




ẋ(t) = A(p, q)x(t) +B(p, q)u(t)

y(t) = C(p, q)x(t) +D(p, q)u(t)
(1.2)

where A, B, C and D represent the state-space matrices of the linear dynamics of the system. Since
the eSYSID should be able to represent the complete class of linear dynamic systems, the coefficients
of the state-space matrices (A,B,C,D) should be made programmable. This programmability is
obtained in two ways.

1. The parameters are variable and their value is made digitally programmable. This digital pro-
grammability is represented in the state-space equations by making all the parameters function
of the discrete vector q. In a chip, programming precision is limited to a fixed amount of bits.
Therefore q is discrete.

2. The state-space matrices are made tunable by a continuous value p in order to counter process
and temperature variations of the chip. Because the limited amount of bits available in the q
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vector, it lacks the precision needed to counter process variations. The p vector uses voltages
instead of binary values to represent its value, so it can be considered as a continuous number.

Consider a Multiple Input Multiple Output (MIMO) linear system of 4th order with 3 inputs and 2

outputs. This means A is a 4 × 4 matrix, B is a 4 × 3 C is a 4 × 3 matrix and D is a 4 × 3 matrix.
With it, we can describe

4th order MIMO Linear Time Invariant (LTI) system The LTI system is the most simple confi-
guration. All inputs and outputs are used as signal lines. p is set to a constant value to counter
process variations or, if the temperature changes, it is used to counter this change. q is used to
set the values of the matrices to a constant value.

4th order MIMO Linear Parameter Varying (LPV) system LPV systems can be described by
varying the parameters p and/or q during the experiment. The configuration is the same as
for the MIMO LTI system, but now the parameters p and q can be varied. For small precise
variations, the parameter p can be adjusted around the value obtained to counter the process
variations. For large but slow variations, q can be adjusted.

Errors In Variables (EIV) and Output Errors (OE) setup EIV and OE set-ups represent an
important class of identification problems. Because noise at the measured input and output
signals is considered, a real-world set-up is obtained. Filtered and/or correlated noise is added
either to both inputs and outputs (EIV) or only to the output (OE). The set-up is shown in
Figure 1.1. With our 4th order system, a second order linear system with a second order noise
model can be considered. Correlated filtered noise can be added by passing independent noise
sources through a MIMO linear dynamic system. Therefore two of the inputs are used as noise
inputs and one of the inputs as signal input.

This thesis considers a 4th order programmable system. Before we look into the actual circuitry
needed to implement this system, we will look into the sensitivity of the state space representation
and try to improve its sensitivity by playing around with the parameters.

1.2 Robust state-space representation

In [2] it is argued that the eigenvalues of a matrix A are very sensitive to small changes to the
non-zero values of that matrix. Tridiagonal matrices however, are relatively insensitive to changes

Figure 1.1: EIV set-up (Source: [1])
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in the non-zero entries of the Matrix. In a state-space representation of a system, the eigenvalues
of the system matrix A represent the poles of the described system [3]. Hence, the high sensitivity
on the eigenvalues translates into a high sensitivity on the poles of the described system. Because
the system has to be highly reliable and repeatable, high sensitivity to the element values cannot be
tolerated. For a tridiagonal matrix however, this sensitivity is greatly reduced. Therefore we will apply
a transformation which makes A tridiagonal.

It is possible to apply a nonsingular transform T on the state vector x

Tz = x (1.3)

This is called a similitude transformation. It results in the following state-space equations




Tż = ATz +Bu

y = CTz +Du
⇔




ż = T−1AT+T−1Bu

y = CTz +Du
(1.4)

It is shown that we can find a state-space representation of the same system by transforming the
state-space matrices as:

A′ = T−1AT

B′ = T−1B

C′ = CT

In [2] a genetic algorithm is proposed to compute the tridiagonal system matrix starting from known
poles. The Lanczos algorithm described in [4] can also be used to generate a tridiagonal matrix from
a set of prescribed eigenvalues (poles). The parameters of B and C can be found by using the method
described in [2]. If we apply the tridiagonalisation on the 4th order system we want to build with 3
inputs and 2 outputs, we obtain the following set

d

dt







z1

z2

z3

z4







=




a′11 a′12 0 0

a′21 a′22 a′23 0

0 a′32 a′33 a′34
0 0 a′43 a′44







z1

z2

z3

z4



+




b′11 b′12 b′13
b′21 b′22 b′23
b′31 b′32 b′33
b′41 b′42 b′43






u1

u2

u3




[
y1

y2

]
=

[
c′11 c′12 c′13 c′14
c′21 c′22 c′23 c′24

]



z1

z2

z3

z4



+

[
d11 d12 d13

d21 d22 d23

]

u1

u2

u3


 (1.5)

with
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z = T−1x

A′ = T−1AT

B′ = T−1B

C′ = CT

Implementing this matrix equation results in the system shown in Figure 1.2. This schematic clearly
shows us the blocks we need to build to realise the filter. All parameters aij , bij , cij and dij must be
made digitally programmable by the discrete parameter q and tune-able by the continuous parameter p.
The system consists of 4 summer-integrators with either 5 or 6 signal inputs and 2 summer-amplifiers
each with 6 inputs. In the following chapter, we look into the realisation of these blocks.
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Figure 1.2: Total system to be built



Chapter 2

Filter Architecture

The high-level architecture for our chip was determined in the previous chapter. Now we will look into
the possible circuits which exist in literature to realise the prescribed system. We will start by looking
into the integrator, because it is the most difficult block to build and because the techniques used to
build in the integrator can be used to build the summer-amplifier, which is the second block required
on the chip.

Integrators have a 1/s frequency characteristic. This can be realised with an op-amp in a configura-
tion as shown in Figure 2.1a. If the op-amp is considered ideal1, we can assume node 1 is connected to
virtual ground and that the op-amp draws no current. This allows us to assume the current determined
by the voltage drop over the resistor (i = Vin/R) has to match the current flowing through the capacitor
(i = sC · Vout). Using these equations, we obtain the transfer function of the ideal integrator

Vout
Vin

= − 1

sRC
(2.1)

The frequency response of this transfer function is shown in Figure 2.1b.

In the first part of this chapter, we will consider the nonidealities which are introduced when we
try to build this ideal integrator on a chip. It will result in a number of possible realisations for the
integrator, each with its own advantages and disadvantages. From these realisations, the MOSFET-C
integrator is chosen.

In the second part of the chapter, the MOSFET-C integrator is examined in more detail. This
type of integrator consists of an op-amp, capacitors and a MOSFET in its linear region called a
transconductor (Figure 2.2). Since the next chapter explains the design of the op-amp, the second
part of the chapter will mainly deal with the design of the transconductor.

The gate voltage of the transistor in the transconductor will take the role of the parameter p from
the previous chapter. Its main use is to compensate process and temperature variations on the chip
and is generated with a tuning scheme which performs a calibration of the complete chip. Possible
tuning schemes are discussed in the last part of this chapter.

1infinite input impedance, zero output impedance and an infinite gain over an infinite bandwidth

17
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Figure 2.1: Integrator Figure 2.2: MOSFET-C Integrator

Figure 2.3: Different types of integrator. (a) The RC integrator (b) programmable/tunable RC inte-
grator (c) switched-R integrator (d) MOSFET-C integrator (e) gm-C integrator (f) OTA-C integrator.

2.1 Various integrator types

Looking at the previous chapter, we can derive some guidelines to choose the integrator realisation

• The integrator should be programmable with a discrete vector q and a continuous voltage p.

• Precision of about 12 to 14 bit should be obtained, so we will need a Signal to Noise and Distortion
Ratio (SNDR) of 72 to 84dB .

• The needed bandwidth is limited up to a few kilohertz

• The performance of the integrator should be highly repeatable from chip to chip. A precise way
of calibrating the integrator is necessary.

We shall now look how we can build an on-chip integrator which satisfies these specifications.

RC integrators The first way to construct an integrator is to use the ideal integrator from the
introduction (Figure 2.3a), but now it’s built with non-ideal components. Passive resistors can be
made on-chip with polysilicon wires, capacitors in our technology of choice can be made with between
two of the metal layers. Both these passive components are very linear. Due to this, the only source
of distortion in the RC integrator is the op-amp itself which is placed in a feedback configuration.
Due to the high gain of the op-amp in the feedback loop, high SNDR of up to 100dB can be obtained
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[5] p. 568. The op-amp also determines the bandwidth limitation: the gain of the op-amp should be
very high to suppress the distortion, so the bandwidth will be limited.

The biggest disadvantage for this integrator realisation is that on-chip absolute values of R and C
are not well controlled. Therefore every resistor has to be tuned. This can be done using banks of
capacitors and resistors. Figure 2.3b shows a possible realisation. The tuning range is limited though.
When the parasitics of the switches are considered one needs to make a trade-off between tune-ability
and parasitics. Tuning ranges up to 2% or 3% can be reached [6], which is insufficient for our purpose.
A possible solution to this problem is to use a switched-R filter [7], shown in Figure 2.3c. By duty-
cycling the resistor, it is possible to tune the value of the resistors in an analog way. Therefore a much
larger tuning precision can be reached without losing linearity. A Total Harmonic Distortion (THD) of
−90dB is reported [7]2. The drawback of this technique is that this integrator is not a continuous-time
integrator any more, so the problems of discrete-time systems like clock injection and noise folding
plague this technique, resulting in lowered Signal to Noise Ratio (SNR) of 64dB for the complete filter.

MOSFET-C integrator A MOSFET in its linear region behaves like a resistor. Its resistance can
be controlled with the gate voltage applied to that transistor, so the MOSFET in its linear region
can be considered as a voltage controlled resistor. The integrator which uses this voltage controlled
resistor is shown in Figure 2.3d. It is called the MOSFET-C integrator. Because it uses a voltage
controlled resistor, the MOSFET-C integrator combines the high tune-ability of the switched-R filter
with the continuous-time properties of the normal RC integrator. The nonlinear distortion will be
higher than in the case of the RC integrator because the MOSFET is not an inherently linear device.
With the topology shown in Figure 2.3d, a SNDR of 80dB can be reached [5]. The bandwidth will
still be limited by the op-amp as for the RC integrator.

gm-C filter In all previous cases, the bandwidth of the integrator is limited by the op-amp. To get
rid of the bandwidth limitations of Active-RC and MOSFET-C integrators, the op-amp can be replaced
by a high bandwidth Operational Transconductance Amplifier (OTA). The OTA takes an input voltage
and converts it into an output current. This current is then integrated by a capacitor. The resulting
integrator is shown in Figure 2.3e. The OTA is normally constructed with a differential pair to obtain
a high bandwidth. To compensate for the low linearity of the differential pair, linearisation techniques
are applied to the differential pair ([5] pp. 578-593). This type of continuous time filter is ideal for
high frequency applications, but at low frequencies, their performance is lower compared to the other
integrator types which contain a full op-amp: they don’t have the high gain feedback mechanism to
suppress distortion and noise. Because of this, these filters rarely achieve more than 60dB of SNDR
[5].

OTA-C integrator We learned from the gm-C filter that a transconductance gm can be made with
a linearised OTA. This transconductance can be used in an integrator with an op-amp instead of the
resistance or linear-region MOSFET. The resulting topology is called an OTA-C integrator (shown in

2“measured total harmonic distortion of the filter at 2kHz for a switched-R filter built in a 0.18µm process with a
0.8V supply voltage. The input sinusoid was held at 0.6V Vpp differential”.
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Figure 2.3f). The limitations are similar to the ones found for the MOSFET-C integrator. The main
difference is the fact that the transconductance gm is made in an active way instead of a passive way.

Since the chip will be used in a frequency range from a few Hertz up to a few kilohertz, we don’t
need the big bandwidth offered by the gm-C and since it’s SNDR is very limited we won’t choose for
a gm-C integrator. The performance of the chip should be accurate up to a very high level, so the
reported 2% to 3% tune-ability of the active RC filter is too low. Although its SNDR is the best of all
considered topologies, we won’t choose for this integrator topology either. The MOSFET-C and OTA-
C integrators remain. Their performance is similar, but we will choose for the MOSFET-C integrator,
because its resistors are made in a passive way and with some modification to the MOSFETS, very
high linearity can be obtained, something that is impossible to obtain with an OTA.

2.2 Differential versus single-ended systems

To improve the performance of the system, we shall use a fully differential topology. This increases
the design complexity of the op-amp and the current consumption, but the advantages are huge:

Cancellation of even order nonlinearities If the inverse of a signal is presented to an even nonli-
nearity, its sign does not change. If each side of the differential system is presented to the same
nonlinearity, the even nonlinearities cancel out when looking at the differential-mode. For a
MOSFET-C integrator, where the nonlinear distortion is mainly even-order due to the quadratic
behaviour of the linear-region MOSFETS, this cancellation of even-order nonlinearities is a huge
benefit.

Greater immunity to disturbances Capacitive coupled disturbances can be made common-mode
when the signal lines are put closely together. By looking at the differential-mode only, the
disturbances disappear.

Greater power supply rejection ratio Disturbances to the power supply present themselves to the
system as a common-mode disturbance. By looking only at the differential-mode, the influence
of the power supply disturbance can be neglected. This property, combined with the disturbance
immunity, is one of the main reasons why, these days, almost all analog circuitry on a mixed
analog-digital chip is made differential.

Larger signal swing The maximum signal swing is mainly determined by the supply voltage. In
a single-ended system, the signal swing can be one time the supply voltage. In a differential
system, the maximal signal swing is twice the supply voltage.

Higher speed possible All op-amps have a differential pair as an input. In a single-ended circuit,
the output of this differential pair has to be made single-ended. This is often done via a current
mirror. This current mirror contains 2 gate capacitances and is therefore a slow circuit. It also
introduces a zero at a frequency which is half the frequency of this pole. In a fully differential
circuit, the mirror is not necessary, so the maximum speed that can be obtained with a differential
amplifier is larger.
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(a) (b)

Figure 2.4: MOSFET-C summer integrator (a) and the MOSFET-C summer-amplifier (b)

The first three of these benefits are limited by the amount of mismatch between the elements in each
path of the differential system. From now on, all circuits will be drawn in their differential topology.
Creating this differential topology is done by just mirroring the single-ended system.

Figure 2.4a shows a fully differential MOSFET-C summer-integrator. The fully differential summer-
amplifier made with linear-region MOSFETS is also shown (Figure 2.4b). These two building blocks
can be used to build the complete architecture proposed in the previous chapter.

We will now study the operation and nonidealities of the MOSFET-C integrator in more detail. A
fully differential MOSFET-C integrator consists of 3 parts: the fully differential op-amp, the capacitors
in feedback and the transconductor which acts as resistors for the integrator. In the technology of our
choice, the capacitors can be made easily on-chip between two metal layers. The op-amp and the
transconductor are more challenging to design. The complete next chapter is dedicated to the design
of the op-amp. The following sections of this chapter focus on the transconductor.

We start by summarising the basic definitions for the MOSFET transistor we will use throughout
this thesis. Afterwards we will look into the transconductor.

2.3 The MOSFET

The Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is the basic building block of the
circuits in this thesis. We consider the MOSFET as a 4 terminal device. There are two variants: an
NMOS and a PMOS variant, which have an n-doped and p-doped channel respectively. The symbolic
representation of an NMOS is shown in Figure 2.5a. The four terminals are shown. They are called
Gate, Source, Drain and Bulk with their respective voltage levels VG, VS , VD and VB as shown in
Figure 2.5.

In its normal large signal mode of operation, the MOSFET has a conductive channel between
source and drain which can be influenced by the gate voltage. Therefore, the most important voltages
to describe the operating point of a MOSFET are the gate-source voltage VGS , drain source voltage
VDS and the current flowing from drain to source ID.

In this thesis, the model used to describe the operation of the MOSFET is called the quadratic
model. It is a very simple model which is certainly not accurate enough for contemporary processes.
However, the process used throughout this thesis is an ’old’ 0.18µm CMOS process and the minimum
gate length will rarely be used in the design. The long-channel approximation will therefore be satisfied
in most cases. The quadratic model will yield results which are good enough to find initial values
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Figure 2.5: Definition of the MOS-
FET voltages and currents

Figure 2.6: Lay-out of a MOS-
FET consisting of a single finger.
(Source:[8])

Figure 2.7: Equations described by the quadratic model.
(Source:[8])

Figure 2.8: Drain Current ID in function of
the overdrive voltage. The three inversion le-
vels can be clearly distinguished (Source:[8])

Figure 2.9: The efficiency gm/ID versus the
overdrive voltage Vov for a certain transistor
(Source:[8])
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through hand calculations. These initial values are then used in simulations which use a more complex
BSIM3V3 model. The obtained initial values are then fine-tuned to take effects into account which
are not included in the quadratic model.

The quadratic model consists of two equations, each for a certain region of operation called the
linear region and saturation3:

Linear region (|VDS | < |VDSAT |) Saturation (|VDS | > |VDSAT |)
ID = (W/L)µCox

(
(VGS − VT )VDS − V 2

DS

2

)
ID = 1

2 (
W/L)µCox (VGS − VT )2

Plots of these functions for both regions are shown in Figure 2.7. The process parameters µ and
Cox will be discussed in the beginning of the next chapter. For now they can be considered as constants
depending on the process.

The gate length L and gate width W are shown in Figure 2.6 for a simple lay-out. In the formulas
they will always appear as the fraction W/L. Hence, the parameter W/L is one of the main design
variables for MOSFET-based circuits. Two more operating parameters are introduced: VT which is
the threshold voltage and VDSAT which is the saturation voltage.

Threshold voltage VT The gate-source voltage VGS required to produce an inversion layer. [9]

Saturation voltage VDSAT The Drain-source voltage VDS required for a transistor to be in the
saturation region.

All expressions encountered so far are called the Large Signal expressions. It is custom in analog design
to use the small-signal assumption and linearising the expressions around an operating point. This
allows the designer to use the powerful linear time invariant framework in the design. One of the most
important parameters that pops up during the linearisation is the transconductance gm. It is defined
as the change of the small signal current ID to a change in VGS .

gm =
∂ID
∂VGS

(2.2)

2.4 The MOSFET in saturation

We first consider the workings of the MOSFET in its saturation region. Remember that this means
that VDS > VDSAT and that, according to the quadratic model, the drain current is described by

ID =
1

2
(W/L)µCox (VGS − VT )2 (2.3)

The expression (VGS − VT ) will, from now on, be called the overdrive voltage Vov. Besides the
W/L, The overdrive voltage is a second very important design parameter in CMOS design. It sets the
inversion region in which the transistor operates. There are three operating regions: called the strong,
moderate and weak inversion levels:

Strong Inversion Vov > 0.2V: Due to the fact that the voltage applied to the gate is much larger
than the threshold voltage, a big inversion layer will have formed under the gate. This makes that

3The absolute value of the voltages is taken to generalise the expressions for both NMOS and PMOS transistors
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drift is the main mechanism behind the electron movement. The expression for the quadratic
model is obtained under these assumptions.

Weak Inversion Vov < 70mV: ([5] p. 19) In weak inversion, the main electron movement mechanism
is diffusion. Due to this, the drain current ID depends exponentially on the gate voltage. The
quadratic model is certainly not valid in weak inversion.

Moderate Inversion 70mV < Vov < 0.2V: In this region, where the exponential behaviour of the
weak inversion gradually turns into the quadratic behaviour of strong inversion.

The drain current ID in function of the overdrive voltage for a given transistor is shown on a logarithmic
scale in Figure 2.8. The exponential relation in weak inversion on a logarithmic scale corresponds to the
linear dependence seen in the figure. The quadratic dependence of strong inversion and the transition
in moderate inversion are also clearly shown in the figure.

The saturation voltage VDSAT lowers when the overdrive voltage decreases. This means that the
voltage range where the transistors are in saturation increases. Moderate and weak inversion therefore
become more and more important for designs made in processes with a lower supply voltage. As we
use an old technology, we are not plagued by a very limited supply voltage4. Therefore we are not
obliged to use the weak and moderate inversion levels.

There is a good reason to use the weak and moderate inversion levels, even in the old technology
of our choise. We can define the efficiency of a transistor by the ratio between the transconductance
gm and the current ID necessary to obtain that gm. This ratio gm/ID versus the overdrive voltage is
shown in Figure 2.9. A transistor in weak inversion is the most efficient. The problem with transistors
biased in weak inversion is that they need to be very big (a gate width W of a few meters if one is
not careful). Therefore, we will bias most of the transistors in this thesis on the edge of the strong
inversion region where Vov = 0.2V, where the quadratic model still works, but where the transistor is
quite efficient. Only if the need arises, the transistors will be biased differently.

2.5 The MOSFET in its linear region

The transconductor consists of MOSFETS in their linear region. A simple concept in itself, but since
its operation is critical to the performance of the whole integrator, it will be thoroughly examined.
Using the quadratic model from the previous section and assuming the device is in the linear region
(VDS < VDSAT ), the drain current ID is given by

ID = (W/L)µCox

(
(VGS − VT )VDS −

V 2
DS

2

)
(2.4)

Applying this formula to the situation shown in Figure 2.10, and looking at the linear term only, we
obtain the following expression

ID = (W/L)µCox (VG − VQ − VT ) (VD − VS) (2.5)

4Due to the fact a fully differential system is considered, the maximal voltage swing is even twice the supply voltage!
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Figure 2.10: Definition of the voltages and currents around the MOSFET.

Figure 2.11: Different types of transconductors. (a) two-transistor transconductor, (b) four-transistor
transconductor and (c-d) R-MOSFET transconductor.

with VQ the signal ground, a set DC voltage around which the differential signal is applied. Throughout
this thesis the signal ground will be half the supply voltage, so VQ = 0.9V . The voltage for the signal
ground can be chose differently for the transconductor in order to increase its tuning range[10]. Using
this expression allows us to describe the working of the transconductor. We will start with the normal
differential realisation: the two-transistor transconductor.

2.5.1 Two-transistor transconductor

If we apply equation (2.5) from the previous paragraph to the situation described in Figure 2.11a,
where the two transistors are matched, we obtain an expression for the current in both branches of
the differential system. Because the transconductor is attached to an op-amp, we can assume both
outputs are at the same voltage (virtual ground). We call this voltage VX . This yields




I1 = (W/L)µCox (VG − VQ − VT ) (VX − Vin)
I2 = (W/L)µCox (VG − VQ − VT ) (VX − (−Vin))

(2.6)

If we consider the differential current i1 − i2 we find

I1 − I2 = (W/L)µCox (VG − VQ − VT ) (2Vin) (2.7)

We can define the differential resistance of the transconductor as the ratio between the differential
voltage Vdiff = 2 ∗ Vin and the differential current Idiff = I1 − I2.

Vdiff
Idiff

= Rdiff =
1

(W/L)µCox (VG − VQ − VT )
(2.8)
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In this structure, the even order nonlinearity cancels due to the fact a differential system is considered.
The odd nonlinearity remains, but is considered to be sufficiently small for most applications [11].

2.5.2 Four-transistor transconductor

In [12] a transconductor is proposed with four matched transistors instead of two. It is called the
Czarnul-Song transconductor and it is shown in Figure 2.11b. Applying the Kirchoff current law to
the output nodes, we obtain




I1 = ID1 + ID3

I2 = ID2 + ID4

(2.9)

The four-transistor transconductor is also attached to an op-amp. Therefore its two output nodes are
again put at a voltage VX . There are two control voltages now, called VG1 and VG2. Applying equation
(2.5) to the current situation, yields




I1 = (W/L)µCox [(VG1 − VQ − VT ) (VX − Vin) + (VG2 − VQ − VT ) (VX + Vin)]

I2 = (W/L)µCox [(VG2 − VQ − VT ) (VX − Vin) + (VG1 − VQ − VT ) (VX + Vin)]
(2.10)

I2 − I1 = 2Vin (W/L)µCox [VG2 − VG1] (2.11)

Rdiff =
1

(W/L)µCox [VG2 − VG1]
(2.12)

VQ and VT disappear from the expressions, making the resistance more tolerant to substrate noise
[6]5. The second advantage of this type of transconductor is that the resistance can be made negative
by making VG1 larger than VG2. This property is used in active mixers and we will use it in the
R-MOSFET transconductor.

2.5.3 Resistors combined with a transconductor: R-MOSFET transcon-
ductor

Since the nonlinear contributions depend on the voltage across the transconductor, it is best to minimise
this voltage. By placing a normal resistor in series with the transconductor, part of the voltage drop
occurs there and, because the resistor is a perfectly linear device, no distortion is introduced. In [16],
two R-MOSFET topologies are discussed. They are shown in Figure 2.11c and d. The first one (Figure
2.11c) can divert some of the current coming from the resistors towards ground. This way, the maximum
resistance of the total structure can be increased. The second R-MOSFET transconductor (Figure
2.11d) uses the 4 transistor transconductor explained earlier. Because the 4 transistor transconductor
allows to present a negative differential resistance, its use in the R-MOSFET transconductor allows to
increase the tuning range of the whole structure.

5Many authors conclude complete nonlinearity cancellation happens in this four-transisor transconductor [13, 14, 15],
but tests using harmonic balance simulations have shown no improvement of the nonlinear behaviour of the circuit.
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Choosing one of the four proposed transconductors and designing them is not considered in this
thesis. The design of the transconductor should be incorporated into the global (nonlinear) optimisa-
tion of the whole integrator using the nonlinear analysis method that will be described in Chapter 4.
On the other hand, influence of mismatches and variance of process parameters must be incorporated
into the design, something that is not considered here.

2.6 Automatic tuning

The process parameters of a chip depend on a lot of factors during the manufacturing of the chip. Since
the link between the resistance presented by the transconductor and it’s control voltage is determined
by parameters such as µ and Cox (which will vary from chip to chip and in function of temperature).
The needed control voltage cannot be predicted in advance and applied to the transconductor with a
normal voltage source.

In the system architecture, this need for a calibration signal was represented by the continuous
vector p. The value of p has to be tuned to get the behaviour of the circuit identical to an exactly
known reference and adapt p then so that the output of the comparison circuit matches the reference.
The circuit that performs this comparison and which tunes p to compensate errors is called the tuning
scheme. Several tuning schemes are suggested in [13]. They can be divided into two categories:

Offline tuning The filter is taken off-line and its characteristics are compared to a reference in order
to be tuned. This method can achieve very good results when all variations to the filter are
time-independent or slow compared to the time between two tuning actions. Because the actual
filter is tuned, mismatches don’t play a role.

Online tuning A copy of the elements is used to make a reference circuit on-chip which is tuned
online. All the other elements in the filter are assumed to be identical, so they are all tuned
this way. Mismatches between the copied element and the working elements come into play and
place a limit on the precision of the tuning.

Due to the fact that the filter is completely programmable, an offline tuning scheme is difficult to
implement because the circuit then depends on the programmed state of the filter. The fact that
the system has to be taken off-line to perform the calibration also hampers the operation too much.
Therefore, an online tuning will be used.

Even with online tuning, the whole filter can be copied and fed with a reference signal. Feedback
can be applied to the copied filter as to predict the reference values needed for the working filter
(Figure 2.12a). Again, problems arise due to the programmability of the filter. Therefore we will tune
smaller pieces of the filter.

The standard transconductor can be copied and its resistance can be compared to a precise external
resistor (Figure 2.12b). This tuning scheme has the advantage of being very simple, but it cannot take
nonidealities of the op-amps into account.

The tuning scheme of choice for our system uses a Phase Locked Loop (PLL). A Voltage Controlled
Oscillator or VCO can be made with two MOSFET-C integrators (Figure 2.13) and its oscillation
frequency can be adjusted with the control voltage of the transconductors.
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Figure 2.12: Automatic online tuning schemes. (a) a copy of the full filter is tuned (b) a reference
transconductor is tuned (c) PLL tuning of the integrators

The phase of the output signal of this VCO is compared to an external reference signal generated
with a crystal. A Phase Frequency Detector (PFD in Figure 2.12c) built with standard logic cells can
perform this phase comparison (Figure 2.14 and [17]). The output of the PFD is sent through a charge
pump (CP in Figure 2.12c) and is inserted into a loop filter. The output of the loop filter is then used
to control the VCO and is used as the reference voltage for the filter.

The oscillation frequency of the VCO is tuned with the accuracy of a crystal oscillator. Hence, the
time constant of both the VCO and all other integrators are set with a high accuracy.

Since the VCO is made with exact copies of the integrators used in the filter, this tuning scheme
can compensate for the parasitic capacitances and nonidealities of the op-amp, so its performance will
be a lot better than the one which uses only the transconductor as a reference element.

Figure 2.13: Voltage Controlled Oscillator
(VCO)

Figure 2.14: Phase Frequency Detector (PFD)



Chapter 3

Op-amp design

The op-amp is the basic building block in almost all analog devices and our programmable system is
no different. Asides from some influence from the transconductors, the system performance will be
mainly determined by the quality of the op-amp. Therefore we will spend a lot of time designing the
op-amp.

The op-amp design starts on paper. Quick hand calculations and approximate expressions allow
us to obtain an approximate sizing of the transistors and the compensation capacitances. The design
found with the hand calculations is then simulated and tuned to account for the approximative nature
of the hand calculations.

For the hand calculations, we first need to determine some process parameters. Second, the design
strategy for our op-amp is explained and applied to a simple example. Afterwards, a fully differential
op-amp architecture and a common-mode feedback circuit are chosen. Finally, the design plan is
applied to this op-amp and the simulation results are shown and discussed.

3.1 One-page MOS model

In [5] p. 38, formulas are given to perform hand calculations for design, based on the quadratic model.
These will be the formula’s we use throughout the design.

ID =
Kp

2n

W

L
(VGS − VT )2 (3.1)

gm =
Kp

n

W

L
(VGS − VT ) =

2ID
VGS − VT

(3.2)

ro =
VEL

IDS
(3.3)

fT =
1

2π

3

2n

µ

L2
(VGS − VT ) or ≈ vsat

2πL
(3.4)

Abbreviation Units Name
Kp

A/V2 µ0Cox
µ0

m/Vs mobility
Cox F/m2 gate capacitance
n emission coefficient
vsat m/s saturation speed
VE V/m Early voltage

For the 0.18µm process, which will be used for the design, only a BSIM3V3 model of the transistors is
available. In the BSIM3V3 model [18], only vsat and µ0 are specified directly. In the hand calculations,

29
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we will use the “MIXEDMODE twin-well 1.8V transistor” model in the TT process corner.

Parameter NMOS PMOS Unit
vsat 7.158 · 104 5.34 · 104 m/s
µ0 3.141 · 102 1.145 · 102 cm2

/Vs

Table 3.1: Parameters and their value as specified in BSIM

The other parameters have to be derived. We start with Cox. The following formula can be used
to determine it

Cox = ε/Tox (3.5)

with Tox the oxide thickness and ε the permittivity of the oxide. For SiO2, the εr is 3.9. Since the
thickness and permittivity are the same for NMOS and PMOS transistors, the Cox parameter is equal.
In our case Tox equals 4.2nm, and hence Cox = 0.0082F/m2.

With Cox and the given mobility, we calculate Kp for the PMOS and NMOS transistors

Kp,NMOS = µ0Cox = 2.58 · 10−4A/V2 Kp,PMOS = 9.39 · 10−5A/V2 (3.6)

In order to calculate the current IDS using the quadratic model, the effective mobility has to be used.
Because the expressions for the effective mobility in the BSIM model are very complicated, we use the
emission coefficient as the correction factor. For silicon, this emission factor n is equal to 1.3. This
gives us the approximate parameters of the CMOS process we will use.

Abbreviation Units NMOS PMOS
Kp

µA/V2 258 93.9
n 1.3 1.3
vsat m/s 7.158 · 104 5.34 · 104
Cox fF/µm2 8.2 8.2
µ0

cm2
/Vs 3.141 · 102 1.145 · 102

Table 3.2: Summary of the process parameters

3.2 Design strategy for a Miller compensated op-amp

Now that we know the process parameters, we can perform hand calculations to get an approximate
sizing of the transistors in function of the wanted gm or Ids. The next part of the chapter will deal
with determining which gm and/or Id are necessary for each transistor in an op-amp. This step is
called the design plan. The design plan starts with an op-amp architecture and specifications for the
op-amp. From these, the required gm and Id of each transistor is obtained. Using the one-page MOS
model from the previous section, we then obtain a sizing for each transistor.

In [5] a technique for the design of two-stage amplifiers is described. A generic Miller compensated
2-stage op-amp can be represented as in Figure 3.1. Each stage is modelled by a voltage controlled
current source with a transconductance gm. Then the most important capacitors for the design are
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Figure 3.1: two-stage op-amp

added: the load capacitance CL, the compensation capacitance CC and the parasitic capacitance at
the internal node Cn1. This capacitance is mainly determined by the input capacitance of the second
stage. The gain-bandwidth product (GBW ) of this circuit is given by[5]

GBW =
gm1

2πCC
(3.7)

and the frequency of the non-dominant pole is given by.

fnd =
gm2

2πCL

1

1 + cn1

cC

(3.8)

These two equations describe the op-amp. CL is specified in the specifications for the op-amp and Cn1
is fixed by the input capacitance of the second stage. This leaves us variables to play around with:
gm1, gm2 and Cc. We have two expressions: (3.7) and (3.8) and three variables, so we can choose the
value of one of them.

Because the value of CC is the most limited (3 · Cn1 < CC < CL) we pick CC freely and let it
determine the values of gm1 and gm2. The ratio between CL and CC is called α from now on.

α =
CL
CC

(3.9)

If only the gain bandwidth GBW is specified, we have to choose the location of the second pole too.
By prescribing the wanted phase margin, the location of the non-dominant pole fnd to the GBW is
fixed. For a phase margin of 63 degrees for example, the non-dominant pole must lie at a frequency
which is the double of the GBW . We use the factor γ to denote the ratio between the GBW and the
non-dominant pole frequency fnd.

γ =
fnd
GBW

(3.10)

The last thing we need to solve from (3.8) is the value of the input capacitance of the second stage
Cn1. Since we don’t know this value yet, we make an educated guess. We use the parameter β to
denote the ratio between Cc and Cn1.

β =
CC
Cn1

(3.11)

We shall assume a β of about 3. The parameters α, β and γ can now be used to design the two-stage
op-amp. We will illustrate the design method on a simple Miller op-amp to show how it works.
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Figure 3.4: The Miller op-amp

3.3 Design example: Miller op-amp

The design method will be applied to the op-amp shown in Figure 3.4. This single-ended op-amp can
be used in the loop filter and the charge pump of the PLL-based tuning network. The Miller op-amp
we consider is a simple design, so it serves as an excellent example to show how the design plan works,
before we apply it to more difficult op-amp architectures. We want a GBW of 200MHz and we want
to be able to drive a load capacitance of 5pF.

We begin by choosing the design parameters α, β and γ. Since this op-amp can be used as an all-
purpose component throughout the chip, we don’t know the exact feedback configuration the op-amp
will be placed into. We will have to assume the worst: unity feedback. If we consider the op-amp as a
two-pole system, we can impose it to be a critically damped system under unity feedback. This would
mean the nondominant pole should lie at a frequency which is 4 times the GBW , or a γ = 4 [19].
Placing the nondominant pole that far from the GBW frequency requires a high gm in the second
stage, resulting in a large current consumption in the second stage. This is not something we want.

Figure 3.2 shows the amplitude characteristic of a two-pole op-amp in unity feedback with varying
γ. There it is shown that γ can be lowered without introducing peaking in the frequency characteristic
of the op-amp in unity feedback. γ = 2 is the minimum value for which no such peaking occurs. We
shall choose γ = 3 so that the op-amp is still robust against process variations.
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We choose α = 3 and β = 3 following the arguments made in [5] pp. 188-194. Solving equations
(3.7) and (3.8) gives us gm1 and gm2

gm1 = 2πGBW · CL
1

α
= 2, 1mS (3.12)

gm2 = 2πGBW · CL
(
1 +

1

β

)
γ = 25, 1mS (3.13)

Since we want an efficient op-amp, we bias its transistors on the edge of strong inversion with an
overdrive voltage (Vov = VGS −VT ) of 0.2V, which corresponds to a of gm/Id of 10 . Since we know the
current flowing through the transistors, it is possible to size them using our simple MOS model (3.1)

(
W

L

)

1

= Ids1/Kp,PMOS
2n V 2

ov = 145

(
W

L

)

2

= Ids2/Kp,NMOS
2n V 2

ov = 633 (3.14)

The current through transistors 1 and 2 is now determined, it is now possible to choose the overdrive
voltage of the remaining transistors and determine their W/L using the same method as for transistors
1 and 2.

(
W

L

)

3

= Ids4/Kp,PMOS
2n V 2

ov = 53

(
W

L

)

4

= Ids1/Kp,NMOS
2n V 2

ov = 1739 (3.15)

(
W

L

)

5

= 2·Ids1/Kp,PMOS
2n V 2

ov = 290 (3.16)

Only the length of the transistors remains to be determined. We don’t take the minimum gate
length of 0.18µm as the intrinsic gain of the transistors decreases with the gate-length and hence the
gain of the amplifier. Including the length in the design is normally done by placing the parasitic poles
at a sufficiently high frequency. Using approximate expressions for the remaining poles in function of
the transition frequency fT and the expression (3.4) from the one-page MOS model, the location of
these poles can be set and a gate length can be obtained ([5] p. 183).

This method becomes difficult to use for more complicated circuits. Instead, we will use simulations
to determine the optimal gate length for our op-amp. The simulator of our choice is Advanced Design
System (ADS)1 of Agilent.

The simulation set-up is shown in Figure 3.5. The op-amp is put into a cell which contains all the
transistors. Normally the bias circuit is placed into another cell, because when many copies of the
op-amp are present on one chip, they can share the bias circuit. To keep things simple, this is not
done here. Around the op-amp cell, a test-bench is built, which contains the excitation sources and
simulation components. This way, the design and testing of the op-amp are independent of each other
and the op-amp can immediately be inserted in a larger design.

We use the power of ADS and engineering intuition to determine the gate length: manual tuning.
By inserting the width of the transistors in the simulation as a function of the length and the W/L,
it becomes possible to tune the length, without influencing the operating point of the transistor too
much. Using the tuning function which is built into ADS allows then to quickly simulate the FRF of

1http://www.home.agilent.com

http://www.home.agilent.com
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(a) Schematic of the Miller op-amp in ADS (b) Simulation set-up

Figure 3.5: Miller op-amp simulation set-up

the op-amp and determining the influence of the parasitic poles on the op-amp.
Because transistors M4, M5 and M6 share their biasing voltage, we will give them the same gate-

length Lload. The same goes for transistors M2, M3a and M3b. Their gate-length will be called Lout.
The gate-length of M1 (Lin) can be tuned independently. For convenience, Lload and Lout are chosen
to be equal. This means only two parameters have to be tuned: Lin and Lout = Lload.

The tuning starts with a large gate length of 1µm for all the transistors. At this length, the drain
bulk capacitance of the load transistor of the output stage M4 is too large and it shifts the frequency
of the nondominant pole to lower frequencies, killing the phase margin. Decreasing the parameter Lout
to 0.42µm solves the problem. The gate-length of the input transistor is kept at 1µm.

With the gate lengths determined, we can perform some final simulations to determine the perfor-
mance of our op-amp. The simulation set-up is placed in the test-bench for the op-amp and is shown in
Figure 3.5b. The results of the simulation are exported to MATLAB2 to generate nice figures. This is
done with the ’MatlabOutput ’ component in ADS. The result of the AC analysis is shown in Figure 3.6.
The GBW of the op-amp is 138MHz with a phase margin of 61◦. A DC gain of 60dB was obtained.

As a final test, we simulate the step response of the op-amp placed in unity feedback. This way,
we can compare the obtained step response to the theoretical shown in Figure 3.3. The result of this
transient simulation is shown in Figure 3.7. The overshoot corresponds to a γ between 2 and 3, the
value we wanted.

Looking at the step response more closely (Figure 3.8), we notice two strange things at the point
where the step occurs. First the output of the op-amp makes a small jump following the input. This
can be explained by capacitive coupling between input and output. After the small jump, the output
goes into the wrong direction! This effect is due to a zero in the right half of the complex plane and
is certainly unwanted. The origin of this zero will be explained next.

3.4 Right half plane zero

A feed-forward path exists around the second stage of the op-amp due to the compensation capacitor.
The result of this feed-forward path is a zero, placed in the right half of the complex plane (RHP
zero). Looking at the open loop FRF of the op-amp, an RHP zero acts as a normal zero: it adds

2http://www.mathworks.nl/products/matlab/

http://www.mathworks.nl/products/matlab/
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Figure 3.8: detail of the step res-
ponse of the Miller op-amp

Figure 3.9: Miller op-amp with RHP zero compensation

20dB/decade to the slope of the amplitude. For the phase though, it acts as a pole: it adds a phase lag
of 90 degrees. This kills the performance of an op-amp, because the GBW increases while the phase
margin decreases. Its effect on the step response of the a closed loop system was shown before. The
frequency of this RHP zero is[19]

fRHP =
gm,out
2πCC

(3.17)

It will lie beyond the GBW since gm,out is larger than gm,in. A first way to compensate this RHP
zero is by adding a resistor in the compensation feedback path (as shown in Figure 3.9). By adding
a resistor with conductance gz in the feedback path, the time constant associated with the RHP zero
shifts to[19]

fRHP =

(
2πCC

(
1

gm2
− 1

gz

))−1
(3.18)

By playing around with the value of gz, we can place the zero where we want. We can either
make it ’disappear’ by choosing gz equal to gm,out. It is difficult however to match a resistor to a gm
because of process variations. Alternatively, we can place the zero in the left half plane (LHP) by
choosing gz smaller than gm,out. We can cancel the nondominant pole by placing the zero at γ times
the GBW 3. Combining the two limits we found, we get an expression for the conductance needed in
the compensation path

2gm1 < gz < gm,out (3.19)

3Note that we cannot use this to place the nondominant pole at a frequency lower than the GBW and then compensate
it by placing the LHP zero on top of it. if we do this, due to mismatches, a pole-zero doublet can occur. This introduces
a slow settling mode in the step response, killing the settling time. [5] p. 84.
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Figure 3.10: Ahuja compensated two-stage op-amp

3.5 Ahuja compensated op-amp

Another way of cancelling the influence of the RHP zero is by inserting a buffer in the feedback path.
When a current buffer is placed in the compensation feedback path, the compensation technique is cal-
led Ahuja compensation. Asides from the RHP zero, the biggest disadvantage of a Miller compensated
op-amp is the fact that the location of the non-dominant pole is determined by gm2/CL (see (3.8)).
Placing this pole at a high frequency requires a lot of current in the second stage to raise the gm2.
If we look at the Miller compensated op-amp from the example, we see the second stage consumes
about 8 times more current than the first one. Placing a current buffer in the feedback path allows
more control of the location of the nondominant pole, so that we can lower the current consumption
of the second stage. In [19] the location of the non-dominant pole of the Ahuja-compensated op-amp
is determined

fnd =
gm2

2π(CC + CL)

CC
Cn1

(3.20)

We can recycle the design strategy for the Miller compensated op-amp, but now use (3.20) for the
location of the non-dominant pole. Choosing α, β and γ and solving both equations to gm gives

gm1 =
2πGBW · CL

α
(3.21)

gm2 = 2πGBW · CL
γ

β

(
1

α
+ 1

)
(3.22)

For a transistor biased in the strong inversion region, gm depends linearly on Id. We can therefore
determine the ratio between the currents flowing through the first and second stage by dividing the
gm of the stages:

gm2

gm1
=
γ(1 + α)

β
≈ 4 (3.23)

This ratio is a lot smaller than the ratio of 12 for the Miller-compensated op-amp. We can thus decide
that the Ahuja compensated op-amp is more power efficient. The problem of the right half plane zero
is also gone. Note that we ignored the current consumption of the current buffer in our calculations.
This is because we will reuse a cascode transistor already present in the op-amp. To be totally correct,
we should also include the input impedance of the current buffer in the calculations. This is done in
[20].
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Figure 3.11: Gain enhancement techniques. (a) Cascade (b) Cascode (c) Gain boosting or regulated
cascode (d) Bootstrapping (e) Current starving

3.6 Techniques to increase the DC gain

Since all the advantages (noise suppression, linearity,...) of a MOSFET-C integrator are due to the
high gain of the op-amp, we want the op-amp used in the integrator to have very high DC gain. There
are several ways to realise this:

Cascade More gain can be obtained by cascading gain stages. Since each stage introduces a dominant
pole, the poles must be compensated when a cascade is introduced in an op-amp.

Cascode A cascode is a common-gate transistor, which acts as a current buffer. By inserting a cascode
in a common-source amplifier, the output impedance increases and so does the DC gain of the
amplifier. The Gain Bandwidth Product of the amplifier remains the same, only the DC gain
increases. Drawback of cascodes is the lower output swing of the amplifier.

Gain boosting or regulated cascode By applying more feedback around a cascode, the gain can
be even more increased without altering the GBW . An example of a Gain-Boosted cascode is
shown in Figure 3.11c. The gain of the gain booster is added to the DC gain. The gain boosting
stage is often realised with another op-amp, care has to be taken then to match the GBW of the
gain booster to the GBW of original cascode ([5] pp. 82-84)

Bootstrapping Parasitic circuit elements can be cancelled out by placing the same voltage at both
sides of it. In Figure 3.11d, source follower M3 places the same AC voltage at both sides of
transistor M2, so the output resistance of M3 is bootstrapped out so that the gain is determined
by the gmro of transistor M1 only.

Current-starving Positive feedback can create negative resistances. The cross-coupled pair shown
in Figure 3.11e presents a negative resistance equal to −2gm. By using a cross-coupled pair in
combination with a normal load, it is possible to increase the total resistance seen at the nodes.
Cancellation of the resistance by making all transistors the same size works only in theory,
because mismatches can make the total structure unstable.

We shall use the first two techniques mentioned. Ahuja compensation calls for a combination of a
cascade with a cascode anyway because we need a current buffer. If the DC gain found after the
design is not sufficient, gain boosters can be added to the cascodes in order to obtain the right
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Figure 3.12: (a) Miller op-amp: A differential pair acts as the first stage, the second stage consists
of two compensated common-source amplifiers. (b) telescopic cascode Miller-compensated op-amp:
The first stage in the Miller op-amp is replaced by a telescopic cascode. (c) Ahuja compensated
telescopic cascode op-amp: The cascodes in the previous op-amp are used as current buffers for the
Ahuja compensation (d) Folded-cascode Ahuja compensated op-amp: The telescopic cascode from the
previous op-amp is folded

gain. Bootstrapping creates difficult architectures and current starving can cause instability, so these
techniques will not be used.

3.7 Integrator op-amp choice

Let’s now choose an architecture for our op-amp. Using the know-how of the Miller and Ahuja
compensation, we will build a two-stage op-amp. For the second stage, a common-source amplifier is
chosen because it has a large gain, can drive a resistive load up to a certain degree and it has a large
output swing. We want the input capacitance of the stage to be the as small as possible, so we pick
an NMOS transistor for the signal with a PMOS load.

For the first stage we start with a normal differential pair. To increase linearity, we can connect
the bulk of the input transistors to their source. To do this, we need either a triple-well NMOS or
a PMOS transistor. Both are available in our technology of choice. We choose for a PMOS input
transistor. The resulting fully differential op-amp is shown in Figure 3.12a. The gain of this op-amp
will be in the order of (gmro)

2 or about 40dB.
Since we want higher gain, we add cascodes to the input transistors and to the load transistors. The

resulting op-amp is called the telescopic-cascode op-amp and is shown in Figure 3.12b. This op-amp
will give a gain of about (gmro)

3. The output swing of the first stage is drastically lowered because of
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Figure 3.13: Looking at the op-amp from a common-mode view

the cascodes. In op-amp b, we are still using Miller compensation. However, since we have cascodes in
the first stage, we can use the Ahuja compensation. We can choose between two cascodes to use as a
current buffer. In [21] both of them are discussed and designed to get the best settling time. We shall
choose a combination of both, with the ratio between them as another design parameter. The op-amp
we have now is shown in figure 3.12c.

To satisfy the conditions for the Ahuja compensated op-amp, we need a large gm in the current
buffer. In the telescopic cascode op-amp, the current used for the buffer is equal to the current used
for the input transistor, so the choice of gm will be limited. In order to have freedom in the choice of
gm of the transistors forming the current buffers, we fold the cascode in the telescopic cascode op-amp.
This results in the folded-cascode op-amp, shown in Figure 3.12d. This will be our op-amp of choice.

3.8 Common-mode feedback

In all the considered fully differential op-amps, the common-mode voltage of the first stage is not fixed
because there are several competing current sources trying to set it. To fix this, a feedback mechanism
is needed which corrects the common-mode output voltage. This correction can be performed at any
of the 3 current sources of the first stage.

The design of the feedback loop for the common-mode is difficult, because the common-mode
feedback loop already contains most of the poles and zeroes of the differential stage and the GBW
of the common-mode loop should be equal or greater than the differential GBW . We start with the
analysis of the common-mode viewpoint of the chosen amplifier and find the influence of the common-
mode feedback limitations on the design of the differential amplifier. Second, we look into the different
ways of measuring the common-mode signal and we choose a common-mode feedback configuration.
Then it’s time to start the sizing of our op-amp.

If we excite our chosen op-amp with a common-mode signal, we can use the symmetry in the
architecture to assume the voltages left and right of the symmetry line are identical. We can thus
assume these nodes are the same and actually short-circuit them. This results in the configuration
shown in Figure 3.13. We will apply the common-mode feedback at transistor Mmirr. The dominant
and nondominant pole frequencies of this circuit can easily be determined:
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Figure 3.14: Model for the fully-differential op-amp with common-mode feedback

GBWcm =
gm,Mmirr

2πCC
(3.24)

fnd,cm =
gm,Mout

2π(CL + CC)

CC
Cn,1

(3.25)

These expressions look similar to the ones of the differential system4[19]. The nondominant pole lies
at the same frequency as the nondominant pole of the differential circuit. This is because the second
stage is the same for the differential-mode as for the common-mode. The GBW of the common-mode
depends on gm,Mmirr

, instead of gm,Min
as was the case for the differential-mode.

During the design of the differential amplifier, the location of the nondominant pole is fixed to
about 2 or 3 times the GBW (design parameter γ). The GBW of the common-mode should be the
same or greater than the differential GBW to prevent instabilities on the common-mode inside the
band of the op-amp.

The fact that the common-mode GBW must be equal or greater than the differential GBW de-
mands that gm,Mmirr must be greater or equal to gm,Min . If a common-mode feedback amplifier is
considered, the difference between gm,Mmirr and gm,Mincan be compensated by adding gain to the
amplifier. For example, if the GBWcm is too small, it can be increased by placing some amplification
in the error amplifier. It is clear that the difference in gm of both transistors Mmirr and Min will be
small. Hence, the gain of the error amplifier will have to be close to unity.

The biggest problem for the common-mode loop is the location of the second pole. The common-
mode loop should be stable, so a phase shift of more than 180◦ cannot be tolerated. The dominant
pole is introduced by the first stage and will determine the GBW . The nondominant pole, determined
by the second stage of the differential amplifier will introduce anther 90◦ phase shift and will kill the
phase margin or even introduce instability. Because of this, the nondominant pole of the common-mode
should lie at a higher frequency than the GBW of the common-mode.

This leaves little room for the GBW of the common-mode:

• the GBWcm should be greater than the GBWdm

• the GBWcm should be smaller than fnd,cm

To get a critically damped system in the differential amplifier, the nondominant pole was placed at
twice the GBW . This leaves very little room for the GBWcm, so we will place the nondominant pole
further away.

4because all the elements in the common-mode system have a value which is the double of the value of the differential
system, the factors 2 disappear in the fractions.



3.8. COMMON-MODE FEEDBACK 41

Figure 3.15: Common-mode feedback circuits. (a) linear region MOSFETS used as common-mode
feedback elements (b) Full error amplifier (c) Error amplifier which uses resistors to measure the
common-mode

To give us more design margin, we will place the nondominant pole further away from the GBW .
This will give more room to place the GBWcm and some mode phase margin, which we can use in the
common-mode error amplifier.

Let’s now look into the error amplifier. Its use is twofold:

1. Measure the common-mode at the output without influencing the differential-mode

2. Compare the measured common-mode to a wanted common-mode signal, amplify this error and
feed it back into the amplifier.

Remember that the gain has to be limited because of the location of the poles. Because of this, diode
connected transistors are commonly used as a load in these error amplifiers. There are several error
amplifiers proposed in [5]

Linear region MOSFETS Figure 3.15a shows a differential pair with linear region MOSFETs as
load. The value of these resistors can be varied by tuning their gate voltage. We can thus apply
the common-mode feedback by tuning these gate voltages.

Error amplifier Using a special differential pair (shown in Figure 3.15b), we can calculate the diffe-
rence between the common-mode presented at the output and a reference signal. Advantages of
this technique are that the topology of differential circuit is not altered and that it only adds a
capacitive load to the differential circuit. The biggest drawback is that the input range of this
error amplifier circuit limits the differential signal swing of the differential stage.

Resistors and Error amplifier In order not to limit the differential swing, resistors can be used to
determine the common-mode (Figure 3.15c). This way, only the common-mode output swing is
limited by the error amplifier. To prevent the resistive loading of the differential stage, either
the resistors are made very large, or source followers are inserted between the resistors and the
output. When only large resistors are used, they tend to form a slow RC time constant with the
input capacitance of the error amplifier and introduce a phase shift. This phase shift will have a
negative impact on the phase margin of the common-mode feedback loop. To prevent this effect,
capacitors can be inserted in parallel with the measuring resistors. This introduces an extra load
for the differential stage though, so the capacitors should be small.
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Figure 3.16: Opening the common-mode feedback loop in an AC simulation in ADS

Figure 3.17: Fully differential folded-cascode op-amp with error amplifier

We shall use the last technique because of its obvious advantages. Since the op-amp has to be able
to drive a resistive load anyway, adding the common-mode measurement resistors does not reduce the
performance significantly.

In order to determine the loop gain, GBWcm and phase margin of the common-mode loop in an
AC simulation, we have to ’open the loop’ [8]. In an AC analysis in ADS, this is done with two ideal
components called DC FEED and DC BLOCK. They are used in the configuration shown in Figure
3.16. The DC FEED component blocks all AC signals, but the DC signals can pass through. This
way, the DC operating point is not influenced by the opening of the loop.

The common-mode loop gain now corresponds to the AC FRF from one side of the DC FEED to
the other side of it (indicated by the dashed line in the Figure). We need an AC source to determine
this FRF. In order to ground this AC source without grounding the node at DC, the DC BLOCK
component is used. It blocks all DC current, but is considered as a short for the AC signals.

With the described set-up, the common-mode loop gain is calculated and its stability is verified.

3.9 Design of the folded cascode op-amp

This section discusses the design of our fully differential folded-cascode op-amp. We want to be able to
drive a load capacitance 10pF with a GBW of 100MHz. The definitions of the names of the transistors
and currents are shown in Figure 3.17.



3.9. DESIGN OF THE FOLDED CASCODE OP-AMP 43

3.9.1 differential-mode

We start by choosing the design parameters:

α = CL

CC
= 3

β = CC

Cn,1
= 3

γ = fnd

GBW = 5

(3.26)

Note that γ is taken 5 to allow for more headroom in the design of the common-mode feedback circuit.
Transconductance gm,Min

can be easily calculated by using the GBW , the parameter α and the load
capacitance CL.

gm,Min =
2πGBW · CL

α
= 2.1mS (3.27)

To counter 1/f noise and mismatches, we want transistor Min to be large, so we choose a relatively
low overdrive voltage of 0.12V which corresponds to a gm/Id of 16, 6. With these choices, it is possible
to size Min

gm1

Iin
= 16.6

(
W

L

)

in

=
2nIin

Kp,PMOSV 2
ov

= 241.6 (3.28)

Since the current flowing into Min is known, The transistor Mtop can now easily be sized. We use an
overdrive voltage of 0.2V and end up with a W/L of 173.9.

The gm of Transistor Mout is determined by the expression for the nondominant pole in the case of an
Ahuja compensated op-amp and the factor γ:

fnd = γGBW =
gm2

2π(CC + CL)

CC
Cn1

(3.29)

Using the parameters α and β allows us to give an approximate expression for this equation and gives
us a starting value for gm2.

gm2 = 2πγGBW · CL(1 +
1

α
)
1

β
= 14mS (3.30)

We use the classical overdrive voltage of 0.2V or gm/Id = 10 for the output transistor. This allows us
to size it:

(
W

L

)

out

=
2nIout

Kp,NMOSV 2
ov

= 351.8 (3.31)

The PMOS load transistor of the output stageMload can easily be sized with the current determined
by Mout. With the same overdrive voltage, it will be about 3 times larger than Mout. The last unknown
that remains is the current needed in the cascode stage. In the calculations about Ahuja compensation,
we found that the gm of the current buffer must be large to place the third pole introduced by the
compensation at high frequencies. Since the common-mode feedback will be applied to Mmirr and
since we want the common-mode to have the same GBW as the differential-mode, the gm of Mmirr

has to be close to the gm of Min.
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Let’s take the gm of Mmirr the same as the gm of the input transistor (namely 2.1mS), but with a
normal overdrive voltage of 0.2V (gm/Id = 10). This results in the following sizing

(
W

L

)

mirr

=
nIcasc

Kp,PMOSV 2
ov

= 144.9 (3.32)

For the current mirror, we want a slightly larger gm to make sure the pole is high frequent enough.
To do this with a fixed bias current, we lower the overdrive voltage to 0.15V. This will increase the
size of this transistor compared to Mmirr

(
W

L

)

casctop

= 257.7 (3.33)

For the NMOS cascode Mcasc we apply choose the same overdrive voltage and bias current as with
Mcasctop. Since it’s an NMOS, it will be about 3 times smaller

(
W

L

)

casc

= 93.8 (3.34)

The last transistor that remains for the differential amplifier is the bottom transistor. Its bias
current is the sum of the input current and the cascode current. The overdrive voltage is again chosen
to be 0.2V.

(
W

L

)

bot

=
n(Icasc + Iin)

Kp,NMOSV 2
ov

= 84.4 (3.35)

3.9.2 Common-mode

The design of the error amplifier uses a lot of elements of the differential amplifier to re-use bias
voltages of the differential amplifier. In order to get a gain close to unity, a diode connected load is
used for the error amplifier. Its gain is gm,cmin/gm,cmload. We want it to be unity, so gm,mcin must be
equal to gm,cmload.

We want the GBW of the error amplifier to a few times larger than the GBW of the differential-
mode. The ratio between the GBW of the differential-mode amplifier and the error amplifier will be
called δ.

δ =
GBWerror

GBWdiff
(3.36)

In order not to decrease the phase margin determined by the poles of the differential amplifier, we
choose a δ of 5.

The load capacitance of the error amplifier is twice the gate capacitance of Mmirr. We assume it
to be 1pF.

gm,cmin = δCGS,mirr2πGBW (3.37)

We want to reuse the load transistor Mcmmirr of the error amplifier to provide a bias value for Mmirr,
so the overdrive value of that transistor is fixed. Since we want both transistors to have the same gm
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(a) (b)

Figure 3.18: Bias Circuits for the cascode. Matched transistors are encircled.

and since both transistors use the same bias current, the overdrive voltages of transistors Mcmin and
Mcmmirr must be the same. With this information, the transistors can be sized

(
W

L

)

cmin

= 79.1

(
W

L

)

cmload

= 217.4

(
W

L

)

cmbot

= 158.3 (3.38)

The value of the resistors used to determine the common-mode has to be designed too. These
resistors form a low-pass filter with the gate of Mcmin. Ideally, the resistance value should be very
high. However, for a fixed capacitance, the frequency of the introduced pole decreased. The pole of
this low-pass filter introduces a phase shift which kills the common-mode phase margin. Therefore, we
place a capacitor in series with the resistor so that the pole is compensated with a zero.

3.9.3 Bias circuit

A commonly used bias circuit for a cascode current source is shown in Figure 3.18a. It uses a copy
of the cascode in a current mirror. The bias voltage of the cascode itself is still not known. It can
be obtained using a simple current mirror, but the operating conditions of that current mirror don’t
resemble the one for the cascode. Hence a bad result will be obtained. The solution to this problem
is shown in Figure 3.18a. The bias voltage for the cascode is obtained with two transistors: the top
of those is an exact copy of the cascode transistor in the current mirror. The bottom transistor will
always be in it’s linear region. We will use it to provide the right voltage at the source of the cascode to
set the cascode transistor in the right operating conditions. Let’s repeat the expression for the current
in a triode region MOSFET:

Ids =
KP

n

W

L

(
VGS − VT −

VDS
2

)
(VDS) (3.39)

We want the operating point of the top transistor to be the same as the one in the cascode. The VDS
is thus determined by the overdrive voltage of the bottom transistor with an added margin (Vmargin)
to ensure the bottom transistor remains in saturation when process variations come into play. The
VGS of the transistor should be the VGS of the cascode transistor, so it is the sum of the overdrive
voltage of the bottom transistor Vov,bot, the margin Vmargin, a VT and the overdrive voltage of the
cascode Vov,casc. We find
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Ids =
KP

n

W

L

(
Vov,bot + Vmargin + VT + Vov,casc − VT −

1

2
(Vov,bot + Vmargin)

)
(Vov,bot + Vmargin)

Ids =
KP

n

W

L

(
1

2
Vov,bot +

1

2
Vmargin + Vov,casc

)
(Vov,bot + Vmargin) (3.40)

This expression can be used to size the linear region bias transistor Mcascbias. The bias circuit in
Figure 3.18a can also be used to obtain the biasing for the PMOS part of the cascode stage. This is
done by just taking the PMOS equivalent of the circuit shown in Figure 3.18a. The current for the
PMOS bias circuit can be obtained by placing a biased cascode current source, as shown in Figure
3.18b. The circuit shown there is the total resulting bias circuit for the cascode.

To lower the current consumption, the W/L of all the transistors in the bias circuit can now be
scaled. To calculate the maximal allowed scale factor, one should take mismatches into consideration.
Since the current consumption is not critical for our chip, we don’t scale the transistors of the bias
circuit5.

Applying (3.40) for the sizing of the linear transistors in the bias circuit, we obtain

(W/L)Mcasclin
= 15.3 (W/L)Mcasctoplin

= 42.1 (3.41)

The current going through the bottom transistor in the bias circuit is Icasc, as shown in the figure.
In the op-amp, the DC current flowing through Mbot is Iin+ Icasc. If we would just copy Mbot without
changing its W/L, the biasing obtained by just sending Icasc trough the transistor would be wrong.
Therefore, we rescale the W/L of the bottom transistor used in the bias circuit (called M ′bot from now
on)

(W/L)M′
bot

=
nIcasc

Kp,NMOSV 2
ov,Mbot

= 105 (3.42)

In order to have maximum swing available at the output of the first stage, we want the DC operating
point of the output of the second stage to be at half the supply voltage, or 0.9V. If we do this, we fix
the DC VGS of the input transistor of the second stage and hence its operating point. Because VT of
the used transistors lies around 0.4V, the overdrive of the output transistor would have to be 0.5V to
obtain 0.9V in total. This makes the transistor inefficient and limits the output swing.

The process used also provided transistors for a supply voltage of 3.3V. Their VT lies around
0.7V. If we choose one of these transistors, a better overdrive voltage of 0.2V yields the wanted 0.9V

DC operating voltage at the output of the first stage. Because of this, the transistor Mout is a 3.3V

transistor. The process parameters were assumed to be the same for the 3.3V transistors as for the
1.8V transistors, so the sizing of Mout was not changed.

5The proposed bias circuit provides all needed bias voltages for the cascode stage of the folded cascode. One of them
is set by the common-mode feedback circuit, so we don’t actually need to place the rightmost branch of the bias circuit.
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3.10 Simulation results

Now that the W/L and the overdrive voltage of all the transistors are chosen, the gate-lengths are the
only parameter left to determine. Like with the Miller op-amp from the design example earlier, we
will do this by tuning the values in ADS. The transistors are divided into four groups with matched
gate-lengths:

1. Lin: Input transistors Min and the tail transistor Mtop.

2. Lout: The transistors of the output stage Mout and Mload.

3. Lcasc: The transistors in the cascode stage Mbot, Mcasc, Mmirr, Mcasctop and their biasing
transistors. Also the load transistor in the common-mode feedback stage6 is matched to this
gate-length.

4. Lcm: The input transistors of the common-mode feedback stage Mcmin and the tail transistor of
the common-mode feedback stage Mcmbot

Tuning was started with all gate-lengths equal to 1µm. At this gate-length, all specifications were
reached, so the tuning didn’t have to be performed. The results of the AC simulations are shown in
Figures 3.19 and 3.20. The gain of the common-mode feedback stage is not unity as shown in Figure
3.23. Because of this, the GBW of the common-mode feedback loop is lower than the differential
GBW . This can be solved in two ways:

• Increase the gain of the error amplifier and make it unity.

• Increase gm,Mmirr . Looking at (3.24), this will increase the GBW of the response from common-
mode feedback to the output of stage 1.

Doubling gm,Mmirr it solved the problem, making the GBWcm equal to GBWdm. This action increased
the current though the cascode stage, so the sizing of the transistors Mbot, Mcasc, Mmirr and Mcasctop

was changed. Their new W/L was calculated with the quadratic model as shown before. The final
values for all transistors are shown in Figure 3.25. The results of AC simulations performed on this
final design are shown in Figures 3.21 and 3.22. The phase margin of the common-mode feedback loop
is 28◦, which is low, but within acceptable bounds. The step response of the op-amp in unity feedback
is shown in Figure 3.24.

The op-amp has been designed and it satisfies the specifications. A DC gain of over 100dB is obtai-
ned with a GBW of 74MHz. A lot of specifications have not been checked though. A thorough noise
analysis should be performed. The power supply rejection ratio should be estimated and mismatches
should be incorporated into the design. The effect of process variations should be analysed and a
lay-out should be made before the op-amp can be used in the chip. We chose to to take another route
instead.Because the main performance killer of the MOSFET-C filter is nonlinear distortion, we will
look into the nonlinear behaviour of the op-amp. In the next chapter, an analysis method is develo-
ped for the op-amp which could be used in a general optimisation of the op-amp and the complete
MOSFET-C filter. Applying this method and actually building the chip are left as future work.

6This is because the DC biasing of the transistor Mmirr is determined by the load transistor of the common-mode
feedback circuit
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Figure 3.19: Differential open loop gain of the
op-amp obtained with the design strategy. (-
) is the amplitude in dB. (-) is the phase in
degrees. The GBW is 80MHz and the phase
margin is 58◦.
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Figure 3.20: Loop-gain of the common-mode
feedback loop of the op-amp obtained with the
design strategy. (-) is the amplitude in dB. (-)
is the phase in degrees. The GBW is 42MHz
and the phase margin is 65◦.
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Figure 3.21: Differential open loop gain of
the corrected op-amp. (-) is the amplitude in
dB. (-) is the phase in degrees. The GBW is
74MHz and the phase margin is 58◦.
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Figure 3.22: Loop gain of the common-mode
feedback loop of the corrected op-amp. (-) is
the amplitude in dB. (-) is the phase in de-
grees. The GBW is 83MHz and the phase
margin is 28◦.
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Figure 3.23: FRF of the error amplifier. (-
) is the amplitude in dB. (-) is the phase in
degrees.
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Figure 3.24: Step response of the op-amp
when placed in a unity feedback configuration
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Figure 3.25: Final design of the Ahuja compensated folded-cascode op-amp
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Chapter 4

Nonlinear Analysis of the Op-amp

The previous chapter discusses the design of two-stage op-amps. In order to improve it, we will develop
a simulation-based method to determine which of the stages in the op-amp contributes the most to the
nonlinear distortion at the output when placed in a feedback configuration. The result of this analysis
can be used to improve the performance of the responsible stage.

A conference paper was written about this analysis method and accepted for the International
Conference on Synthesis, Modelling, Analysis and Simulation Methods and Applications to Circuit
Design (SMACD)1. Therefore, the paper is presented in its original lay-out.

There are some major differences between the op-amp used in the analysis method described in
the paper and the op-amp designed for the programmable filter:

1. The simulation-based method is developed on a single-ended op-amp because the extra feedback
loop for common-mode stabilisation of a fully differential op-amp adds another difficulty to the
analysis.

2. The op-amp in the analysis is a Miller compensated op-amp. In an Ahuja compensated op-amp,
where one or more of the cascodes of the first stage are used as current buffer, the first and
second stage are mixed up. Because of this, it is not possible to make a clear distinction between
the first and the second stage of the op-amp.

In this chapter, after presenting the paper, we will look more closely into the errors made in the
analysis method by considering the difference between the AC simulations used in the analysis an
the BLA of the stages. Afterwards, the method is extended and used to analyse a fully-differential
Miller-compensated op-amp.

1www.smacd2012.org
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Determining the Dominant Nonlinear Contributions
in a multistage Op-amp in a Feedback Configuration

Adam Cooman, Egon Geerardyn, Gerd Vandersteen, Yves Rolain

Abstract—In this paper a simulation based method is proposed
to determine the position of the dominant nonlinear contribution
in the schematic of multistage op-amp operated in a feedback
configuration. The key idea is to combine the Best Linear
Approximation (BLA) and a classical noise analysis to determine
the dominant source of nonlinear contributions. This results in
a powerful yet simple design tool which does not require special
analyses or custom models. As an example, the method is applied
to a folded-cascode op-amp.

Index Terms—nonlinear distortion, operational amplifiers

I. INTRODUCTION

MOST analog design flows rely only on linear time in-
variant reasoning while designing an analog/RF circuit.

When the linear design flow is completed, the importance of
nonlinearities is assessed by identifying compression points
or intercept points. Those provide a measure of the nonlinear
behavior of the total circuit only. This standard approach does
not give any clue to help the designer to modify the design
to decrease the nonlinearities as no information is provided
about the source of the nonlinear distortion.

In [1]–[3] a Volterra-based approach was used to localize the
nonlinearitiy of the circuit in an analytic way. For larger cir-
cuits, this analytic method yields lengthy complex expressions.
Overview is hence easily lost. Those methods also require
the replacement of the transistor model by an approximate
analytic-nonlinear model.

In this paper, a method is proposed which can be positioned
in between the linear design framework and the symbolic
Volterra theory. The op-amp is considered to consist of a
cascade of two or more gain stages. Each stage is considered as
a black box. No knowledge about the interior of a stage is used.
The nonlinear distortion is determined by a transient analysis.
The input and output signal of every stage is measured during
the simulation. The only constraint imposed on the transient
simulation is the choice of the excitation signal used. A so
called multisine excitation allows one to determine the BLA
of the system. The BLA consists of an FRF model and a
colored power spectral noise source to model the influence
of the nonlinearity [5]. One can hence consider the nonlinear
distortions as an additional colored noise source. Using regular
noise analysis now allows one to determine the distortion that
is introduced by every stage.

Section II explains the method and the theory behind it in
more detail. Then, in Section III, the method is applied to a
folded-cascode op-amp.

II. METHODOLOGY

In this section we explain the theory behind the method.
First we define the multisine excitation signal that is used
in the transient analysis. Using a special multisine allows
to split the even and odd nonlinear contributions. They can
be “measured” separately. Second, the theory of the BLA
is introduced. This leads to the description of the nonlinear
contributions as a colored Gaussian noise source. Finally we
apply the noise analysis on the cascaded stages.

A. Multisine excitation

In [4] an odd random-phase multisine is shown to be a well-
suited excitation signal for the detection of nonlinearities in
a measurement context. This claim remains valid for simula-
tions. Random-phase multisines combine the best of random
excitations and periodic signals.
• Random excitations are close to real world signals. They

allow a broad measurement bandwidth at the cost of
spectral leakage and a reduced signal-to-noise ratio at
some frequencies. They also hamper an easy detection of
the nonlinearity.

• Periodic signals have a deterministic spectrum. They do
not mimic real world signals very well. When properly
designed, they don’t suffer from spectral leakage and can
ease the detection of the nonlinearity.

A random phase multisine behaves as a random noise signal
that mimics real world signals but comes with the high signal-
to-noise ratio and the nonlinear detection capability of a
periodic signal. A random-phase multisine with N components
is described by:

s(t) =
1√
N

N∑

k=1

Ak cos (2πkf0t+ φk) (1)

where Ak and φk are the amplitude and phase of the kth spec-
tral line and f0 is the resolution frequency of the multisine. The
value of the phase spectrum is the result of a uniform random
process over [0, 2π[. By imposing additional constraints on the
frequency grid, it is possible to construct a multisine suited for
the analysis of nonlinearities: the odd random phase multisine
[5].

In this signal, only odd frequency bins are present (A2k =
0). An even nonlinearity produces components at a frequency
which is the sum of an even number of excited frequencies.
As the excited frequencies are all chosen to lie on an odd
frequency grid, the sum of an even number of such frequencies
will lie on an even grid. This means that even nonlinearities
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Figure 1. Applying the BLA on a nonlinear stage

will not interfere with the response of the system at the excited
frequencies. Hence an even distortion becomes measurable by
looking at the spectrum present at the even frequency grid
lines.

The odd order nonlinear contributions will always contribute
to the excited frequency lines. The sum of an odd number of
odd frequencies always yields an odd frequency.

Two approaches exist to determine the level of odd non-
linearities [6]. In this paper the faster of both is used. Some
odd frequencies are omitted in the excitation signal. One then
interpolates the measured distortion spectra at the non-excited
frequency lines (also called the “detection lines”) to estimate
the odd non-linear contribution present at the excited lines [6].
To choose which excitation frequencies to omit, the excited
bins are grouped into groups of 4 neighboring excited bins
from which one bin is randomly removed.

B. Best Linear Approximation

Linear system theory describes the response of an LTI
system as

Y (f) = G0(f) · U(f) (2)

with U(f) and Y (f) respectively the deterministic linear
input and output spectra and G0(f) the frequency response
function (FRF) of the system. For nonlinear systems, this
relation is no longer generally valid, but can be used to
approximate the linearized behavior of the system around an
operating point in least squares sense. This approximation is
called the Best Linear Approximation (BLA). For a random
multisine excitation with a sufficiently large number F of
excited frequencies, the FRF can be written in the form [6]

G(f) = GBLA(f) +GS(f) +GN (f) (3)

with:
• GBLA(f) the best linear approximation. It consists of the

linear term G0(f) and a systematic nonlinear bias term
GB(f) which describes the compression/expansion of the
system and is caused by odd nonlinearities,

• GS(f) the stochastic nonlinear contribution which acts
as a noise source with zero mean,

• GN (f) the simulation (or measurement) noise.
This BLA represents the response of the nonlinear system to
signals with similar properties (e.g. same power spectrum,
probability density function, . . . ) as the signal applied to
determine the BLA.

The BLA assumes that the system consists of an FRF
GBLA(f) with an additive output noise source GS which
accounts for the stochastic nonlinear contributions (see Figure
1). Since the stochastic nonlinear contributions act like noise,

Figure 2. Cascade of two stages with a finite input impedance

it is possible to apply techniques borrowed from classical noise
analysis on these nonlinear contributions. When we apply the
BLA to every stage of the op-amp, we get a (nonlinear) noise
source GS(f) for every stage. If we refer all the (nonlinear)
noise sources in the system to the output, we can compare
their contribution to the total measured output distortion of
the system.

C. Determining and comparing the nonlinear contributions of
each stage in an Op-amp

In order to refer the (nonlinear) noise contribution of each
noise source to the output node, we need to know:

1) the power spectral density (PSD) of each noise source
2) the FRF between that noise source and the output node

If the stages behave dominantly linear, it is possible to perform
the noise analysis using AC FRFs only. From now on, we will
neglect the nonlinear bias term GB(f). To verify the validity
of this assumption, it is sufficient to compare the (noisy)
GBLA obtained by the division of the spectra calculated during
the transient analysis to the noise-free AC FRF G0. The trade-
off to be made is a classical bias versus variance trade-off. We
have chosen to allow for a bias of a few dB in the amplitude
and a few degrees in the phase in this paper.

1) Determining the PSD of the noise source: ideal case: To
determine the PSD of the (nonlinear) noise source for a certain
stage, we calculate the difference between the simulated
nonlinear response of that stage and its linearized response.
Looking at Figure 1 we find that in general:

GS = Gout −GBLA · in (4)

If we neglect the nonlinear bias term GB , GBLA boils down
to the AC FRF G0. If the input and output loading impedance
of the stage are infinite, we can use the voltages measured at
the input and the output port alone. This results in the ideal
behavior

GS,i = Vout,i −G0,i · Vin,i (5)

where GS,i is the (nonlinear) noise contribution, Vin,i and
Vout,i are the voltages measured at the input and output of the
ith stage during the transient analysis respectively and G0,i is
the FRF of the ith stage, calculated with an AC analysis.

2) Determining the PSD of the noise source: real world
case: In an op-amp, it’s not possible to consider the input
impedance of the stage to be infinite. Expression 5 will
therefore yield a poor approximation of the PSD in this case.
When the input impedance of the loading stage is not infinite,
theory requires us to apply a full two-port noise analysis. To
avoid the complexity, we have chosen an intermediate solution.
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We use the Norton equivalent for the output of the stage-
under-test and consider the (nonlinear) noise source to be a
current source only. This neglects the voltage noise source
that is present in the full 2-port case [7].

Consider a cascade of two stages as shown in Figure 2.
Determining the noise contribution Is,1 can be done using the
following formula:

Is,1 =
gin,2 + gout,1

gin,2

(
Imeas − FRFV in,1→ImeasVin,1

)
(6)

where gin,2 is the input conductance of stage 2 and gout,1 is
the output conductance of stage 1. Imeas is the current flowing
out of stage 1 and into stage 2 and Vin,1 is the input voltage
of stage 1. Both are measured during the transient analysis.
FRFVin,1→Imeas

is the transconductance of the first stage. All
conductances and the transconductance are determined using
an AC analysis.

3) Determining the FRF between the source and the output:
The FRF needed to refer the calculated noise contribution to
the output is determined using another AC analysis. An AC
source is placed at the assumed location of the (nonlinear)
noise source and it’s response to the output is calculated.
• For nonlinear contributions calculated using (5), an AC

voltage source is placed in series with the considered
stage.

• For nonlinear contributions calculated using (6), an AC
current source is placed between the output of the con-
sidered stage and AC ground.

D. Simulations

The necessary simulations were performed using classical
AC and transient analysis, while the post-processing of the
data was done in MATLAB.

First, the multisine excitation signal is generated in MAT-
LAB and then imported into the transient simulation as a time-
domain waveform. The sampling frequency of the simulation
is chosen to be 10 times the maximum frequency of the
multisine.

For an n-stage op-amp, the following simulations are
needed:

1) A transient analysis with a multisine excitation to de-
termine the nonlinear contributions at the unexcited
frequency bins of the multisine. The op-amp can be
placed in an inverting feedback configuration.

2) One AC analysis to determine the FRF of the stages. A
voltage to current FRF is needed for the stages which
are followed by a stage with a finite input impedance. A
voltage to voltage FRF is obtained for the stages with an
infinite load. This analysis can also be used to determine
the input impedance of the stages, by measuring the
current flowing into the stage.

3) For each stage, an AC analysis is needed to determine
the total conductance of it’s output node. For this AC
analysis, the input of the stage is AC grounded.

4) For each stage, an AC analysis to determine the FRF
from the considered noise source to the output. An
AC source is added at the location of the equivalent

Figure 3. Op-amp used for the simulations

nonlinear noise sources and it’s influence is measured at
the output.

The set of AC analyses is not only used to determine the FRF
of the subsystems, but also their input and output impedance
and the impact of the different nonlinear contributions to the
output. The latter enables the use of this nonlinear analysis
in a classical noise analysis. The relative importance of each
nonlinear source is obtained assessing its relative contribution
to the total nonlinear distortion at the output. This results in
an easy to use analysis tool to determine the dominant sources
of nonlinear distortion.

The AC analyses are performed up to the sample frequency
of the analysis, with a resolution determined by the lowest
frequency of the multisine.

For the transient analysis, a fixed time step is chosen in
function of the sampling frequency. Two periods of the multi-
sine are simulated. The first period is discarded to suppress
transient effects. The integration method is trapezoidal to
prevent artificial damping of the poles in the op-amp, such
that the results of the transient analysis match the results of
the AC analysis up to the frequency where warping starts to
occur [8].

III. EXAMPLE: FOLDED-CASCODE OP-AMP

As an example, the developed method is applied to the
folded-cascode op-amp shown in figure 3. The op-amp is
designed for the UMC.18 CMOS technology. During the
simulations, a BSIM3v3 model is used for the MOSFETs. The
op-amp under test has a gain bandwidth product of 100MHz
and a DC gain of 80 dB. It is connected as an inverting
amplifier with a gain of 10. The impact of the resistive loading
of the output stage is reduced by a voltage buffer inserted
between the output and the feedback resistor.

The multisine used for the experiment has a resolution of
100Hz and excites frequencies up to 10MHz. The sample
frequency of the simulation is 100MHz. The phase spectrum
of the multisine is random. Note that a set of 100 realizations
of the multisine was used to select the signal with the smallest
crest factor. Its amplitude is scaled such that the output covers
80% of the supply voltage. This prevents clipping and imposes
that the stages behave dominantly linear. The linear FRF,
determined with the AC analysis can therefore be used.

The following results will be discussed: first, we analyze
which stage contributes most to the nonlinear distortion. Next,
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Figure 4. Output referred nonlinear contributions of the first and second
stage. (+) are the contributions at the even frequency bins and (+) are the
contributions at the odd frequency bins.

it is shown that the total distortion is equivalent to the sum of
all distortion contributions.

The calculated nonlinear output contributions of both stages
are shown in Figure 4. Blue symbols show the contributions
at the even spectral lines, representing the even nonlinear
distortion. Red symbols represent the contribution at the odd
spectral lines without excitation, representing the odd nonlin-
ear contributions. At low frequencies, the first stage is the
dominant source of nonlinear distortion. At frequencies close
to the gain bandwidth product, the second stage is responsible
for most of the distortion.

To verify whether the contributions are correct, the sum of
both output referred contributions is compared to the actual
measured output spectrum during the transient simulation.
The result of this comparison can be seen in Figure 5. The
difference between the sum of the calculated contributions and
the measured distortion at the output gives a measure for the
error level of the procedure. Because the sample frequency
of the transient analysis is 100MHz, the results can only be
considered to be accurate in a frequency up to about 10MHz.
The simulations show that the error increases at very low
frequencies. This is due to the fact that the measured current
between the stages is used to calculate the contribution of the
first stage. At very low frequencies, the input impedance of
the second stage is very large. Hence the current becomes very
small, the numerical precision of the calculations comes into
play and this increases the error.

Figure 5. Comparison between the sum of the calculated output referred
nonlinear contributions and the actual output spectrum measured during the
transient simulation. (o) and (o) represent the measured output distortion at
odd and even frequency bins respectively. (·) and (·) represent the sum of
the calculated nonlinear contributions of both stages at odd and even bins
respectively. (+) and (o) represent the difference between both at odd and
even bins respectively.

IV. CONCLUSIONS

A transient simulation using a multisine excitation allows
the extraction of a “best” linear transfer function and an
equivalent nonlinear “noise” source. If the system behaves
dominantly linear, one can use the AC analyses to determine
the output distortion generated by each stage. Assuming the
nonlinear distortion behaves as a current noise source allows
to take finite input impedance of the stages into consideration
without using a full two-port noise analysis. The calculated
distortion is then referred to the output by simulating the AC
transfer function between the assumed source and the output.
By doing so, the nonlinear contribution of each stage in an
op-amp to the output is determined. This method allows to
determine the dominant source of nonlinearities without using
special simulation techniques or models.
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Before we go into more detail in some of the methods explained in the paper, let’s repeat the basics of
the analysis method:

1. The BLA allows us to consider nonlinear distortion as noise.

2. Using a random odd random phase multisine (A random-phase multisine which excites only
odd frequency bins of which some odd excitation lines are omitted), we can split the nonli-
near contributions generated by even-order nonlinearities from the ones generated by odd-order
nonlinearities.

3. Applying spectral correction2 to the output of a page, we can calculate the nonlinear contribution
of each stage at its output.

4. Using the FRF of each nonlinear noise source to the output, we can refer all the sources to the
output and compare their influence to the total nonlinear distortion generated by the op-amp.

4.1 BLA versus AC

Theoretically, the BLA of the stages should be used in the spectral correction of the second step. Using
the definitions found in Figure 4.1, we find

GS = Gout −GBLA · in (4.1)

where GS is the nonlinear contribution of the stage under consideration, Gout the output signal, Gin
the input signal and GBLA is the BLA of the stage under consideration. In the paper, the AC FRF of
the stage was used instead of the actual BLA. This has two good reasons:

1. In the considered feedback configuration, it would be very hard to determine the BLA. Due to
the large gain of the op-amp at low frequencies, the input signal at the op-amp input is very
small (See Figure 4.3). Hence, the resulting BLA is very noisy at low frequencies.

2. Even at high frequencies, the BLA obtained using the fast method is noisy. To counter this,
averaging over several realisations of the multisine should be applied. The transient simulation is
already the most time-consuming simulation, so having to perform several transient simulations
would increase the simulation time to unacceptable levels.

The AC FRF of the stages has the advantage that it is noiseless and can be determined very quickly3.
2Spectral correction:
Consider a noisy system with a known FRF.

U Y FRF

N

If the input and output spectra are exactly known, we can calculate the noise generated by the stage by subtracting
the known response to the input from the output: N = Y − FRF · U

3In the currently implemented version of the analysis, all points of the multisine are also calculated using an AC
analysis. Due to this, the simulation time of the AC analysis is also quite long. It can easily be decreased though:
by making the frequency grid for the simulation coarser and interpolating its result to all the frequency bins of the
multisine. When this interpolation is applied, the transient simulation will definitely be the most time consuming of
both simulations.
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There will be a bias error however compared to the BLA. This bias error can be estimated by looking
at the noisy BLA and comparing it to the results of the AC analysis. The comparison is shown in
Figures 4.4, 4.5 and 4.6. The results at low frequencies are worthless, due to the weak excitation that
results from the feedback loop. At higher frequencies, where the signal at the input of the op-amp
is larger than the nonlinear noise floor, we can at least say something about the BLA of the op-amp
versus the results obtained with the AC analysis. The bias versus variance trade-off mentioned in the
paper is clear: The BLA is noisy, but a clear bias error can be seen between the AC FRF and the BLA.
Because the op-amp is mainly linear, the error is small, in the order of a few dB for the amplitude and
up to a few degrees for the phase.

Besides its use in the spectral correction to determine the nonlinear contribution of a stage, the BLA
should also be used to refer the calculated contributions to the output.

GS,i@Out = GS,i@Stage ·BLAStage i→Out (4.2)

Where GS,i@Out represents the nonlinear contribution of stage i at the output of the op-amp, GS,i@Stage
represents the nonlinear contribution of stage i at the output of stage i, calculated using spectral
correction. BLAStage i→Out represents the BLA of the influence of the noise source to the output. The
BLA needed here is even harder to determine than the one used in the spectral correction, because there
is no excitation present at the frequencies needed to compute the transfer functions to the output. This
could be resolved by applying a tiny multisine excitation at the place of the considered noise source
during the main transient analysis4. This way, the nonlinear operating point is set by the big multisine
excitation at the input, while the voltage applied by the noise source(s) allows to calculate the BLA
around this nonlinear operating point without altering it.

The multisine in the noise source should excite some even frequency bins and if several small
excitations are used, their excited frequency lines should not coincide. If these conditions are satisfied,
we can write the contributions to the output at even frequency bins as

GS +BLAStage i→out ·GN (4.3)

where GS represents the stochastic contribution generated by the nonlinear response to the big
multisine excitation at the input, GN represents the small excitation applied at the location of the
assumed (nonlinear) noise source and BLAStage i→out represents the BLA from stage i to the output.
Since the component GS is stochastic when different phase realisations of the big multisine are consi-
dered, averaging over several of these phase realisations can decrease the influence of GS . In order to
estimate its influence, some even bins should be left unexcited.

When this method is applied to the op-amp, both the BLA of the stages and the BLA needed
to refer the nonlinear contributions to the output can be determined. This would result in analysis
without AC simulations. Applying this method to the op-amp under consideration is a subject for
future research.

4This technique resembles the one described in [22], where a small excitation was applied on top of a large multisine
to determine the out-of-band BLA
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Figure 4.1: Applying the BLA
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Figure 4.2: Definition of the different voltages
and current used in the determination of the
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Figure 4.3: Spectrum of the signal Vamp when a
flat-amplitude random odd random phase multi-
sine excitation is applied to the configuration as
shown in Figure 4.2. The symbols (·) represent
the excited bins, (+) represent the non-excited
odd bins and (◦) represent the even bins.
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Figure 4.4: Stage 1 voltage to current (Iint/Vamp)
BLA (+) compared to the AC FRF (-)
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Figure 4.5: Stage 1 voltage to voltage (Vint/Vamp)
BLA (+) compared to the AC FRF (-)
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Figure 4.6: Stage 2 voltage to voltage (Vout/Vint) BLA (+) compared to the AC FRF (-)
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Figure 4.7: (a) The two-stage fully differential op-amp with common-mode feedback in a feedback
configuration (b) Schematic representation of the MIMO model of the set-up.

4.2 Nonlinear analysis of a fully-differential op-amp

The op-amp used in the analyses up till now is a single-ended op-amp. To use the nonlinear analysis
to improve the performance of fully-differential designs, we need to extend the analysis method.

A schematic representation of the fully-differential op-amp with common-mode feedback is shown in
Figure 4.7a. Similar to the paper, we consider a two-stage op-amp, but now including a common-mode
feedback circuit.

Stage 1 and 2 now have two inputs and two outputs. We could consider the voltage and current at
every input and output, but since we used the differential and common-mode signals during the design
of the op-amp, we will also consider them during the analysis.

If we have two nodes with voltages V1 and V2, we can always perform the following operation:

V1 =
V1
2

+
V1
2

+
V2
2
− V2

2
=

1

2
(V1 + V2) +

1

2
(V1 − V2) (4.4)

V2 =
V2
2

+
V2
2

+
V1
2
− V1

2
=

1

2
(V1 + V2)−

1

2
(V1 − V2) (4.5)

It is then possible to define 1/2 (V1 + V2) as the common-mode voltage and 1/2(V1 − V2) as the
differential-mode voltage. The same can be done with the currents flowing into node 1 and 2 [9] p.
812. When considering the op-amp from a differential and common-mode point of view, we obtain the
model shown in Figure 4.7b. The first stage has three inputs (one for the differential-mode, one for the
common-mode and one input for the signal coming from the common-mode feedback stage) and two
outputs (differential and common-mode). The second stage consists of two inputs and two outputs
(differential and common-mode). The common-mode error amplifier has two inputs (differential and
common-mode) and one output.

4.2.1 MIMO representation of the problem

The nodes which are used in the analysis are shown in Figure 4.9. The abbreviations used there will
from now on be used in the formulas to denote the node under consideration. All of these nodes
(excluding the CMFB node) contain a differential-mode and a common-mode. We will notate the
voltages and currents on the node in the following way: First a V for voltage or an I for current, then
the name of the node in subscript and finally, DM to denote the differential-mode and CM for the
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common-mode. For example, the differential-mode of the output voltage will from now on be called
VOUT,DM

We will use matrix notation to describe the MIMO transfer functions of the stages. This simplifies
the notation of the equations. The frequency response of a MIMO LTI system with nu inputs and ny
outputs can be written as follows

Y (s) = G (s) ·U (s) (4.6)

where Y (s) is the ny × 1 output vector, U (s) is the nu × 1 input vector and G (s) is the ny × nu
Frequency Response Matrix, called FRM.

Due to the symmetry of the different stages, an excitation at the common-mode will never have
an influence on the differential-mode and vice-versa. Hence the elements which correspond to a signal
path going from differential-mode to common-mode and vice-versa in the matrix are zero. These zero
entries correspond to the dashed lines from Figure 4.7b.

Asymmetric nonlinear effects like slewing and clipping can introduce a common-mode signal when
only a differential excitation is applied. Therefore, under large signal operation, the zero coefficients
in the FRM are no longer zero. This is known as a differential to common-mode conversion.

In the paper it was assumed that the system is dominantly linear and the BLA can be approximated
by the AC FRF. We confirmed in the previous section that the error made under this assumption
remains small. Neglecting the mode conversion (differential-mode to common-mode and vice versa)
is a similar assumption. Verifying the assumption is hard though. The full MIMO BLA should be
determined in a feedback configuration. This verification is not included in this thesis and is a subject
of further research.

The first stage has three inputs and two outputs. resulting in a 2 × 3 MIMO FRM for each
considered frequency. We can write the AC FRM from the input voltages to the output current as

[
IINT,DM (s)

IINT,CM (s)

]
=

[
S1,1 (s) 0 0

0 S2,2 (s) S2,3 (s)

]
·



VAMP,DM (s)

VAMP,CM (s)

VCMFB (s)


 (4.7)

S1,1 (s) = FRFVAMP,DM→IINT,DM
(s) (4.8)

S2,2 (s) = FRFVAMP,CM→IINT,CM
(s) (4.9)

S2,3 (s) = FRFVCMFB→IINT,CM
(s) (4.10)

From now on, we will call this 2 × 3 FRM S1. The 2 × 1 vector which contains the differential and
common-mode current of the internal node will be called IINT . The reason why the current at the
output is considered and not the voltage will be explained later. The 3× 1 vector which contains the
3 input voltages of the first stage will be called VAMP . This gives us

IINT (s) = S1 (s) ·VAMP (s) (4.11)
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The second stage has two inputs and two outputs. Hence its MIMO FRM consists of a 2× 2 matrix.
Again, the coefficients of the matrix corresponding to a signal path going from differential to common-
mode and vice-versa are zero by the symmetry of the system.

[
VOUT,DM (s)

VOUT,CM (s)

]
=

[
S1,1 (s) 0

0 S2,2 (s)

]
·
[
VINT,DM (s)

VINT,CM (s)

]
(4.12)

S1,1 (s) = FRFVINT,DM→VOUT,DM
(s) (4.13)

S2,2 (s) = FRFVINT,CM→VOUT,CM
(s) (4.14)

In the same way as before, we define the FRF matrix describing the second stage as S2, the vector
containing the common-mode and differential input voltages at the internal node as VINT and the vec-
tor containing the common-mode and differential output voltages as VOUT . Rewriting the expression
in matrix format gives us

VOUT (s) = S2 (s) ·VINT (s) (4.15)

The common-mode feedback stage has two inputs and one output. Because the error-amplifier is
built symmetrically with two resistors, the differential-mode will never have influence on the error.
Therefore the common-mode feedback stage could be represented with a SISO system, The matrix
representation therefore equals

VCMFB (s) =
[
0 SC1,2 (s)

]
·
[
VOUT,DM (s)

VOUT,CM (s)

]
(4.16)

SC1,2 (s) = FRFVOUT,CM→ICMFB
(s) (4.17)

we call the FRF matrix describing the common-mode feedback stage SC from now on. the vector which
contains the output voltages was defined in (4.15) as VOUT . This gives us the following description
for the common-mode feedback stage:

ICMFB (s) = SC (s) ·VOUT (s) (4.18)

Note that the location of the zero coefficients in the matrices S1, S2 and SC allows us to split
the total MIMO problem into two SISO problems, one SISO problem for the differential-mode (which
is exactly the same as the problem considered in the paper) and one for the common-mode (which
contains the two stages and the error amplifier).

4.2.2 Simulation set-up

Because the analysis doesn’t work with Ahuja-compensated op-amps, a new two-stage op-amp is
designed, The design follows the same design plan as the one described in the previous chapter, but
now with Miller-compensated op-amp.



62 CHAPTER 4. NONLINEAR ANALYSIS OF THE OP-AMP
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Figure 4.8: Fully-differential Op-amp used in the analysis
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Figure 4.9: Definition of the signals in the two-
stage miller-compensated fully differential op-
amp with common-mode feedback. All nodes (ex-
cept CMFB) are transformed into common-mode
and differential signals.
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Figure 4.10: Commonly used blocks in the simu-
lation set-ups in ADS. (a) 4 port balun (b) AC
ground, as was described in Section 3.8 (c) Signal
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Figure 4.11: Simulation set-up used to deter-
mine the influence of the common-mode distor-
tion created by the first stage. The input of the
amplifier is placed at AC ground. Using ideal ba-
luns, the signal can be split into common-mode
and differential-mode. An AC current source
is placed between the common-mode node and
ground. By looking at the output during this AC
simulation, the noise transfer function is obtai-
ned.
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Figure 4.12: Simulation set-up used to determine
the total conductance to ground of the common-
mode part of the internal node. All inputs of
the first stage are AC-grounded. Ideal baluns are
used to split the internal signals into a differential
and common-mode signal. An AC current source
is used to excite the common-mode node. By loo-
king at the response from this current source to
the common-mode voltage on the internal node,
the total impedance to ground can be obtained.
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Instead of a folded-cascode op-amp, a telescopic cascode op-amp is used now. It its architecture
and the definitions of the stages are shown in Figure 4.8.
All simulations are performed for this op-amp in an inverting amplifier configuration with gain 10. Two
transient analyses are performed. One with a common-mode multisine excitation and another with
a differential-mode multisine excitation. From now on they will be referred to as the common-mode
experiment and the differential-mode experiment.

Like in the paper, the excitation used is a random odd random phase multisine. It has a frequency
resolution of 1kHz and excites odd bins up to 20MHz. The transient analysis time-step corresponds
to a sample frequency of 100MHz. The multisine with the smallest crest factor is chosen from 100

realisations and is then scaled in amplitude so that an output voltage swing of 80% of the supply
voltage is obtained in the experiment with the differential-mode excitation. The same multisine is
used for the common-mode and the differential-mode experiment. Two periods of the multisine are
simulated and the first period is discarded to suppress transient effects. Signals of both common-mode
and differential-mode are saved and imported in MATLAB for processing.

Performing the transformation to common-mode and differential-mode in MATLAB is not ideal
from a numerical point of view. Instead, we will make use of ideal baluns in the simulation set-up
to perform this transformation (shown in Figure 4.10a). This way, the simulator can optimise the
numerical representation used for the differential and common-mode separately, so that small signals
at one of the modes can coexist with large signals on the other mode.

4.2.3 Spectral correction

Now that we know the way we can represent the fully differntial op-amp and we have the results of
the transient analyses, we can perform the analysis itself. First, we perform the spectral correction
at the output of every stage using equations (4.11), (4.15) and (4.18). This gives us the nonlinear
contribution of every stage at its output.

Second stage We will start with the second stage. The vector GS,2 represents the distortion added
by the second stage to the common-mode and differential output. The output corrected with the linear
response to the input described by equation (4.15) results into

GS,2 (s) = VOUT (s)−VINT (s) · S2 (s) (4.19)

The noise contributions in the vector can be correlated since we are considering a MIMO problem.
We will assume the contributions to be uncorrelated though, because the main source of correlation
would be the coupling between the differential and common-mode signals which was assumed to be
negligible.

The result of this spectral correction applied to the second stage is shown in Figure 4.13c for the
differential-mode experiment and in Figure 4.14c for the common-mode experiment. For the expe-
riment with the differential excitation, the differential-mode of the (nonlinear) noise source contains
virtually no component at its even frequency bins due to the symmetry of the circuit. The even fre-
quency bins are therefore not shown in the figure. On the other hand, the common-mode contribution
of GS,2 contains no components at the odd bins, so they are also not shown in the figure.
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First stage The internal node is loaded by the input conductance of the second stage. In the paper,
it was found that if this is the case, it is better to consider the distortion source as a current source
between the node to ground. The formula to perform the spectral correction, when a current noise
source is assumed, was

Is,1 =
gin,2 + gout,1

gin,2

(
Imeas − FRFV in,1→ImeasVin,1

)
(4.20)

where Is,1 is the nonlinear contribution in the current source, the part between brackets is the spectral
correction of the current measured at the output, gin,2 is the input conductance of the stage connected
to the node and gin,2 + gout,1 is the total conductance to ground on the considered node.

We can adapt this formula to our situation now. The matrix representation of the part between
brackets corresponds to applying spectral correction on the output of stage 1 using (4.11) (that’s why
the current was considered at the internal node instead of the voltage). The conductances used in
(4.20) now depend on the considered mode: the common-mode input impedance of the second stage
is different from the differential-mode input impedance of the same stage. The same goes for the
total conductance to ground. We can still use AC analyses to determine these conductances though.
A schematic representation of the simulation set-up used to determine one of these conductances is
shown in Figure 4.12. Performing similar simulations, we obtain the common-mode and differential
input conductance of the second stage (gin,diff and gin,comm), and the common-mode and differential
conductance to ground of the internal node (gtot,diff and gtot,comm). To simplify the expressions, we
place the fractions in a matrix GINT :

GINT =

[
gtot,diff/gin,diff

gtot,comm/gin,comm

]
(4.21)

Using the element-wise product 〈◦〉5, we obtain the MIMO representation of (4.20):

GS,1 (s) = GINT (s) ◦ (IINT (s)− S1 (s) ·VAMP (s)) (4.22)

Using this formula, the nonlinear contributions of the first stage are calculated. They are shown in
Figure 4.13a for the differential-mode experiment and in Figure 4.14a for the common-mode expe-
riment. Again, in the differential experiment, the odd bins of the common-mode and the even bins of
the differential-mode don’t contain any contributions, so they are not shown in the figure.

Common-mode feedback stage The distortion introduced by the common-mode feedback stage
remains to be determined. Again, a current noise source has to be considered, because the common-
mode feedback circuit is loaded by the input conductance of the third input of the first stage. We can
immediately re-use (4.20):

GC (s) =
gtot,CMFB (s)

gin,Stage1 (s)
(ICMFB (s)− SC (s) ·VOUT (s)) (4.23)

5(A ◦B)i,j = (A)i,j · (B)i,j . This corresponds to using the dotproduct in MATLAB



4.2. NONLINEAR ANALYSIS OF A FULLY-DIFFERENTIAL OP-AMP 65

The input conductance of the common-mode feedback input of the first stage equals two times the gate
capacitance of one of the transistors of the first stage. The total input capacitance will therefore be
small. At low frequencies, the conductance of this capacitor is so small that numerical precision of the
AC analyses came into play. Due to this, when the spectral correction with the impedances was used,
the low-frequent contribution became very large and it increases the error at low frequencies. Because
of this, the input impedance of the common-mode feedback input of the first stage was assumed infinity
and the voltages were used for the spectral correction, instead of the currents. This gives

GC (s) = VCMFB (s)− FRFVOUT,CM→VCMFB
(s) · VOUT,CM (s) (4.24)

The result of this spectral correction is shown in Figure 4.13e for the differential-mode experiment and
in Figure 4.14e for the common-mode experiment.

4.2.4 Referring to the output

The nonlinear contribution added to the output of every stage are determined above. In order to be
able to compare them, we have to refer the contributions to the output. This is done in the same way
as before: by determining the FRF from the nonlinear noise source to the output using AC simulations.
An AC source is placed at the location of the assumed noise source and its response to the output is
calculated. An example of a simulation set-up for a common-mode noise source is shown in Figure
4.11.

Referring the contributions to the output comes down to multiplying the calculated contribution
at the stage with the found FRF from source to output. The output referred nonlinear contributions
are shown next to the figures which contain the contributions at the output of the stage themselves.

4.2.5 Results: differential-mode experiment

Looking at the results of the experiment with a differential-mode excitation, we see similar results
as the ones obtained for the single-ended op-amp: At low frequencies, the nonlinear contributions of
the first stage are dominant. At higher frequencies, the second stage starts contributing more tot the
total nonlinear distortion, but its contribution never becomes dominant. The trend is similar to the
one found with the analysis on a single-ended op-amp. This was to be expected, because the MIMO
problem was split into two SISO problems, of which the problem for the differential signal matched
the one for the single-ended op-amp.

The first stage is a telescopic cascode stage now, the possible voltage swing will be lower compared
to the folded cascode input stage used in the paper. This could explain the reason why now, the
contribution of the first stage is dominant over the complete frequency range.

All even order distortion generated by the stages appears in the common-mode signal. When they
are referred to the output, the common-mode signals are suppressed by the common-mode feedback.
This explains why the distortion at the even frequency bins of VOUT,CM is a lot smaller than the
distortion at the differential-mode, while at the stages themselves, about the same amount of even and
odd order distortion is generated.
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The error made in the analysis can be estimated by looking at the difference between the measured
output spectrum and the sum of all the output referred contributions. These comparisons can be seen
in Figure 4.15a for the error at the differential-mode of the output signal and in Figure 4.15b for the
common-mode of the output signal. Again, the error increases close to the sample frequency due to
frequency warping that is present in the trapezoidal method used.

The even bins of the differential-mode and the odd bins of the common-mode are also shown in the
figures. It is clear that the signals there are negligible.

4.2.6 Results: Common-mode experiment

For the common-mode experiment, the first stage and the common-mode feedback stage are the main
contributors to the distortion. The cancellation of the common-mode signal in the first stage makes
that the second stage is only excited with small signals, resulting in low distortion levels. This can
also be seen in the comparison between the BLA and the AC FRF of the second stage shown in Figure
4.16b.

In this experiment, absolutely no contributions were found on the differential-mode of the signals.
That’s why they are not shown in the figures. This result originates in the fact the simulated system
is perfectly symmetrical. If mismatches were to be introduced, results would look differently.

Similar to the differential-mode experiment, we compare the sum of the output referred nonlinear
contributions to the measured output spectrum. Figure 4.15d shows the error on the common-mode
of the output signal. Again, frequency warping increases the error near the sample frequency. Figure
4.15c shows the differential-mode of the output signal. The distortion level lies around -240dB, and
hence is negligible in the differential mode.

4.3 Improving the nonlinear analysis: Future research

The nonlinear analysis was applied to the fully differential op-amp. This analysis gives a qualitative
and quantitative insight in the nonlinear behaviour and design of the circuit. There is however still
room for improvement:

• If the full two-port noise analysis is to be implemented, op-amps with more complicated com-
pensation schemes like the Ahuja-compensation could be analysed.

• Extension to using the full MIMO BLA makes it possible to push the op-amp further into
nonlinear operation mode, where slewing and clipping start to have an effect

• Perform a detailed study on the origin of the errors introduced in the analysis method. Cor-
relation between the nonlinear contributions should be investigated. Also a full two-port noise
analysis should be implemented to reduce overall errors.

• The number or points on the AC analysis frequency grid can be greatly reduced, lowering the
overall simulation time drastically. A correct interpolation method should be applied to keep the
interpolation errors reasonably low.
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(a) Nonlinear contribution of the first stage at its output.
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(b) Output referred nonlinear contributions of the first
stage.
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(c) Nonlinear contribution of the second stage at its output.
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(d) Output referred nonlinear contributions of the second
stage.
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(e) Nonlinear contribution of the common-mode feedback
stage at its output. (+) represent the non-excited odd bins
(x) are the even bins
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(f) Output referred nonlinear contributions of the common-
mode feedback stage. (+) represent the non-excited odd
bins (x) are the even bins

Figure 4.13: differential-mode experiment. In sub-figures a, b, c and d, (+) represent the contributions
found on the odd bins of the differential-mode (x) are the contributions found at the even bins of the
common-mode. The even bins of the differential-mode and the odd bins of the common-mode of every
signal contained no contribution and are therefore not shown.



68 CHAPTER 4. NONLINEAR ANALYSIS OF THE OP-AMP

10
3

10
4

10
5

10
6

10
7

10
8

−140

−120

−100

−80

−60

−40

frequency [Hz]

[d
B

]

(a) Nonlinear contribution of the first stage at its output.
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(b) Output referred nonlinear contributions of the first
stage.
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(c) Nonlinear contribution of the second stage at its output.
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(d) Output referred nonlinear contributions of the second
stage.
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(e) Nonlinear contribution of the common-mode feedback
stage at its output.
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(f) Output referred nonlinear contributions of the common-
mode feedback stage.

Figure 4.14: Common-mode experiment. (x) are the contributions found at the even bins of the
common-mode. (+) represent the contributions found on the odd bins of the common-mode. There
were no contributions found at the differential-mode, so they are not shown here.
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(a) Diffential experiment, differential-mode (b) Differential experiment, common-mode

(c) Common-mode experiment, differential-mode (d) Common-mode experiment, common-mode

Figure 4.15: Comparison between the output spectrum obtained during the transient analysis and the
sum of all the output referred nonlinear contributions
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(a) First stage, differential-mode of VAMP to differential-
mode of VINT during the experiment with an excitation
on the differential-mode. (+) BLA (-) AC FRF
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(b) Second stage, (+) differential-mode to differential-
mode BLA. (+) Common-mode to common-mode BLA
and AC FRF. (-) AC FRF

Figure 4.16: Comparison between the BLA and the AC FRF of the stages
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Chapter 5

Conclusions

We took some steps in the design of the eSYSID, an electronic SYStem IDentification test-bench. An
architecture for the linear dynamic part of the eSYSID was proposed in the first chapter. Robustness
of the state-space filter was increased by making the system matrix A tridiagonal.

In the second chapter, we chose the MOSFET-C technique to build the (programmable) integrators
and the amplifiers needed to represent the state-space equations in an analog way. The transconductor
was examined and adapted to produce the least distortion possible. The end of the second chap-
ter describes the calibration circuitry needed to make the filter robust to process and temperature
variations.

The third chapter covered the op-amp design. We started with the design of a simple Miller op-amp
to demonstrate our design strategy. Then, a more complicated op-amp was chosen to obtain a higher
DC gain and the design was made fully differential.

Because nonlinear distortion is the main contributer to the signal to noise and distortion ratio in
a MOSFET-C filter, we developed a nonlinear analysis method to pinpoint the dominant nonlinear
contributor in the op-amp. First, the method was applied to a single-ended op-amp. Second, the
limitations and validity of the hypotheses made during the analysis were verified. Finally the analysis
was adapted and applied to a fully differential op-amp.

The combination of nonlinear analysis and the design strategy explained provide us a strong design
tool to optimise the nonlinear distortion generated in the complete eSYSID. There is a lot more work
to be done before the eSYSID is ready for production though:

Development of the digital programming interface For slowly time-varying systems with large
variations in the parameters, the filter must be reprogrammed during the measurement. Because
glitches have to be avoided during the measurement, the way the filter is programmed is crucial.
Optimisation between programming speed and the number of pins used should be made.

Representation of a wider class of systems In its original specification, the eSYSID contains
static nonlinear blocks in order to represent nonlinear systems. For the representation of common
electronic circuits, mixers, analog to digital converters (ADC) and digital to analog converters (DAC)
are also added. The development of those blocks is left for future research.
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Tuning network The architecture of the PLL-based tuning network was discussed at the end of
Chapter 2. Although essential for the performance of the global filter, the design of its components
was not considered in this thesis.

General optimisation The design of the op-amp was done by hand. Although the hand-designs are
sufficient, they could be optimised to improve performance. Using of a good noise analysis, together
with our developed nonlinear analysis, the designs of all components could be assessed and improved
more efficiently. Mismatches, process variations and yield should also be taken into consideration.

ESD protection If the chip is to be used, protection against Electrostatic Discharge (ESD) is
necessary. Its influence on the design should be looked at and minimised.

Lay-out The final step in the design of the chip is the drawing of the lay-out of the components.
Because there is a lot of work to be done before the end of the design, the lay-out of the eSYSID was
not considered in this thesis.

Improvement of the NL analysis technique The nonlinear analysis elaborated in Chapter 4
could become a powerful design tool if further research is placed into it. Possession of a tool which
can be used to determine the dominant source of nonlinear distortion in a complex system would be
extremely handy in design. Therefore the analysis method should be applied and adapted for the
analysis of other basic analog building blocks, a very interesting source for a lot of future research.
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