Distortion Contribution Analysis of strongly non-linear analog circuits

Adam Cooman, Piet Bronders & Gerd Vandersteen

agency for Innovation by Science and Technology

Vrije Universiteit Brussel

Analog design = LTI

Design flow based on Linear System Theory

- Non-linear performance at a (too) late stage
- No indication about the source of distortion

We need to find the source of distortion

Distortion Contribution Analysis Pinpoint the dominant source of distortion to solve possible problems effectively

Usually: Volterra analysis under 1-tone and 2-tone excitations

Modern signals ≠ One- or Two-tones

Distortion depends on input signal class

Realistic testing = Realistic excitation

Overview

Multisines and the BLA

Estimation of MIMO BLA

DCA of a Doherty PA

Multisines \cong modern signals

Example: Class-C + multisine

Example: Class-C + multisine

Best Linear Approximation

Only valid for fixed class of input signals Power Spectrum fixed Distribution Fixed

Distortion term = *OUT* – *BLA* * *IN* LOOKS LIKE NOISE!

Overview

Multisines and the BLA

Estimation of MIMO BLA

DCA of a Doherty PA

Real circuits have reserve gain

 $V_{in} \rightarrow V_{out}$ model is not representative Port-based representation needed.

We will use S-parameters $\begin{bmatrix} B_1 \\ B_2 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$

Multiple-Input Multiple Output (MIMO)

Estimating MIMO BLA

2 inputs = 2 excitation signals

Add tickler multisines to excite correctly

MIMO BLA of the class-C example

Overview

Multisines and the BLA

Estimation of MIMO BLA

DCA of a Doherty PA

Conclusions

Analyzing distortion? Use realistic excitation signals

Want to find the dominant source? BLA + Noise analysis

Multiple inputs?

Add ticklers and zipper them

Distortion Contribution Analysis of strongly non-linear analog circuits

Adam Cooman, Piet Bronders & Gerd Vandersteen

agency for Innovation by Science and Technology

Vrije Universiteit Brussel