Local stability analysis of microwave circuits

Adam Cooman, Fabien Seyfert, Laurent Baratchart, Martine Olivi, Sylvain Chevillard

Modern circuit simulation tools

Equilibrium Solution DC simulation

Periodic solution

Harmonic Balance

Local stability analysis: Linearise

Equilibrium Solution

DC simulation

$Z_{m n}(j \omega)=\frac{V_{m}(j \omega)}{I_{n}(j \omega)}$
AC analysis

Periodic solution

Harmonic Balance

$$
Z_{m n}(j \omega)=\frac{V_{m}\left(j \omega+b j \omega_{e x}\right)}{I_{n}(j \omega)}
$$

LSSS analysis

Is frequency response stable?

$Z(j \omega)$ known on a discrete set of frequencies Does $Z(j \omega)$ have right half-plane poles?

Content

Stability Analysis by projection

Examples

Filter influence

Estimating unstable poles

Assumptions:

Circuit contains delay
$\Rightarrow Z(j \omega)$ meromorphic

Circuit is realistic
\Rightarrow unstable part rational

Unstable pole observable in $Z(j \omega)$
$Z(j \omega) \in \mathcal{L}_{2}$
\Rightarrow No poles on the $j \omega$ Axis

Noiseless data

Stability in Hardy context

$$
\begin{gathered}
g \in \mathcal{H}_{2} \text { when }\left\{\begin{array}{l}
g \text { analytic in RHP } \\
\int|g(j \omega+\sigma)|^{2} d \omega<\infty \quad \sigma \rightarrow 0
\end{array}\right. \\
\mathcal{L}_{2}=\mathcal{H}_{2} \quad \oplus \quad \overline{\mathcal{H}_{2}} \\
Z(j \omega)=Z_{\text {stable }}(j \omega)+Z_{\text {unstable }}(j \omega) \\
Z_{\text {stable }}(j \omega)=P_{\mathcal{H}_{2}}\{Z(j \omega)\} \\
Z_{\text {unstable }}(j \omega)=P \overline{\mathcal{H}_{2}}\{Z(j \omega)\}
\end{gathered}
$$

Step 1: Transform to unit circle

Step 2: Multiply by Filter function

$$
Z_{f}=Z_{d i s c} \cdot \psi_{\lambda}
$$

To smooth out edges
To suppress influence of out-of-band data

Step 3: Compute Fourier series

$$
Z_{f}(\theta)=\underbrace{\sum_{k=0}^{\infty} f_{k} e^{j k \theta}}_{\text {Zndisc }_{\text {disbe }}}+\underbrace{\sum_{k=1}^{\infty} f_{-k} e^{-j k \theta}}_{\text {Zansisade }}
$$

Step 3: Compute Fourier series

Rational Interpolation

$$
M_{m}(z)=\frac{a z^{2}+b z+c}{z+d}
$$

Continuous derivative in interpolation points

Quadrature integration

$$
f_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} Z(\theta) e^{-j k \theta} d \theta
$$

+ no extra parameters
- slow

Fast Fourier Transform (FFT)

+ Fast
- \#points is extra parameter
- Introduces aliasing

Content

Stability Analysis by projection

Examples

Filter Influence

Estimating unstable poles

Example 1: Balanced Amplifier

Result: Instability is detected

$0-50 \mathrm{GHz}$ in 1 MHz steps 50 k points. Processing time: 60 ms

Example: Power Amplifier

Possible odd-mode instability in second stage Impedance determined here

Thanks to M. Van Heijningen (TNO) for the simulation data

Results

Content

Stability Analysis by projection

Examples

Filter influence

Estimating unstable poles

Influence of the filter

$Z(j \omega)$ unstable pole in γ_{i} :

$$
\begin{gathered}
P_{\overline{\mathcal{H}}_{2}}\{Z(j \omega)\}=\frac{R_{i}}{j \omega-\gamma_{i}} \quad P_{\overline{\mathcal{H}}_{2}}\left\{Z \psi_{\lambda}\right\}=\frac{\psi_{\lambda}\left(\gamma_{i}\right) R_{i}}{j \omega-\gamma_{i}} \\
\lambda \text { too low: might suppress poles } \\
\lambda \text { too high: influence of edge }
\end{gathered}
$$

Projection as function of λ

Filter magnitude is known:

$$
\left|\psi_{\lambda}\left(\gamma_{i}\right)\right| \cong \lambda^{1-\frac{\alpha}{\pi}}
$$

Is $Z(j \omega)$ unstable?

Stable OR Unstable pole far away

Projection $+\lambda$-analysis:
promising technique (Work in progress)

Content

Stability Analysis by projection

Examples

Filter influence

Estimating unstable poles

Estimating unstable poles

Unstable part = rational
\Rightarrow Classical methods to estimate the poles

Least squares
Levy's method, or more advanced
H_{∞} approximation
Adamjan, Arov and Krein (AAK)
Padé approximation

Padé approx. of unstable part

When system has N poles in the unit circle then

$$
\Psi_{N+1}=\left(\begin{array}{cccc}
f_{-1} & f_{-2} & \cdots & f_{-(N+1)} \\
f_{-2} & f_{-3} & \cdots & f_{-(N+2)} \\
\vdots & \vdots & \ddots & \vdots \\
f_{-(N+1)} & f_{-(N+2)} & \cdots & f_{-(2 N+1)}
\end{array}\right)
$$

Has rank N
Use singular values of Ψ_{M} with $M>N$ to determine order

Padé approx. of unstable part

With order N known, compute SVD

$$
\Psi_{N+1}=U S W^{\prime}
$$

Poles of unstable part are now roots of

$$
W_{N+1, N+1} z^{N}+W_{N, N+1} z^{N-1}+\cdots+W_{1, N+1}
$$

Example: random system

System with 52 poles and 50 zeroes. (RSS Matlab)
Time delay at the input (1ns)
2 unstable poles

Example: random system

Error $=\frac{\left|p_{\text {estimated }}-p_{\text {correct }}\right|}{\left|p_{\text {correct }}\right|}=4.9 \cdot 10^{-6}$

Conlcusions

Stability analysis with projection
"Model-free" method
Allows non-parametric stab-analysis

Filter influence
Could be used to get automatic yes/maybe answer

Determining unstable poles
Exploit fact that unstable part is rational
Padé approx. only requires small \# Fourier coeffs

